
'

&

$

%

Confidence Intervals for the Autocorrelations of the Squares of

GARCH Sequences

Piotr Kokoszka, Gilles Teyssière and Aonan Zhang

Utah State University, Mathematics and Statistics

NBG Bank

Utah State University, Mathematics and Statistics

piotr@math.usu.edu

stats@gillesteyssiere.net

aonanzhang@cc.usu.edu

ICCS 2004, Kraków: June 8, 2004



'

&

$

%

Purpose of the paper:

Compare finite sample performance of several methods for finding

confidence intervals for autocorrelations of squared returns on speculative

assets X2
t , t = 1, . . . , T , by means of their empirical coverage probability.

Suppose we have a method of constructing, say, a 95% confidence interval

(l̂n, ûn) from an observed realization X1, X2, . . . , XT .

We simulate a large number R of realizations from a specific GARCH type

model from which we construct R confidence intervals

(l̂
(r)
n , û

(r)
n ), r = 1, 2, . . . , R.

The percentage of these confidence intervals that contain the population

autocorrelation is the ECP, which we want to be as close as possible to the

nominal coverage probability of 95%.

Ultimate goal: to recommend a practical procedure for finding confidence

intervals for squared autocorrelations which assumes minimal prior

knowledge of the stochastic mechanism generating the returns.
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Autocorrelations of Squared Returns

γ̂T,X2(h) =
1

T

T−h
∑

t=1

(

X2
t −

1

T − h

T−h
∑

t=1

X2
t

) (

X2
t+h −

1

T − h

T
∑

t=h+1

X2
t

)

whereas the population autocovariances are

γX2(h) = E
[

(X2
0 − EX2

0 )(X2
h − EX2

0 )
]

.

The corresponding autocorrelations are

ρ̂T,X2(h) =
γ̂T,X2(h)

γ̂T,X2(0)
, ρX2(h) =

γX2(h)

γX2(0)
.

We focus on the lag 1 autocorrelation, i.e., h = 1.
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Confidence intervals for autocorrelations of squared returns

Residual Bootstrap

GARCH(1,1) model

Xt = σtZt, σ2
t = ω + βσ2

t−1 + αX2
t−1.

1. Estimate ω̂, α̂, β̂ and compute Ẑt = [ω̂ + βσ2
t−1α̂X2

t−1]
−1/2Xt, with

X0 = X̄t.

2. Form B bootstrap realizations

X2
t (b) = [ω̂ + α̂X2

t−1(b)]Ẑ
2
t (b), t = 1, 2, . . . , T, where

Ẑ2
1 (b), . . . Ẑ2

T (b), b = 1, 2, . . . , B, are the B bootstrap samples selected

with replacement from the squared residuals Ẑ2
1 , . . . , Ẑ2

T .

3. Calculate the bootstrap autocorrelations ρ
(b)
T,X2(1), b = 1, 2, . . . , B and

use their empirical quantiles to find a confidence interval for ρT,X2(1).
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Confidence intervals for ACF of squared returns (cont 1.)

Denote by F ∗
ρ(1) the EDF (empirical distribution function) of the

ρ
(b)
T,X2(1), b = 1, 2, . . . , B.

We consider two types of confidence intervals:

• Equal-tailed confidence interval: the (α/2)th and (1 − α/2)th quantiles

of F ∗
ρ(1) yield an equal-tailed (1 − α) level confidence interval.

• Symmetric confidence interval: let F ∗
ρ(1),|·| be the empirical distribution

of the B values |ρ
(b)
T,X2(1) − ρ̂T,X2(1)|.

Denote by q|·|(1 − α) the (1 − α) quantile of F ∗
ρ(1),|·|.

The symmetric confidence interval is

(

ρ̂T,X2(1) − q|·|(1 − α), ρ̂T,X2(1) + q|·|(1 − α)
)

.

A usual criticism of methods based on a parametric model is that

misspecification can lead to large biases.
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Confidence intervals for ACF of squared returns (cont 2.)

Block Bootstrap

Method which does not require on a model specification, but relies on the

choice of the block size b (a difficult task). We proceed as follows:

1. Having observed the sample X2
1 , . . . , X2

T , form the T − 1 vectors

Y2 = [X2
1 , X2

2 ]′,Y3 = [X2
2 , X2

3 ]′, . . . ,Yn = [X2
T−1, X

2
T ]′.

2. Choose a block length b and compute the number of blocks

k = [(T − 1)/b] + 1 (if (T − 1)/b is an integer we take k = (T − 1)/b).

3. Choose k blocks with replacement to obtain kb vectors

Yj1 ,Yj1+1, . . . ,Yj1+b−1, . . . ,Yjk
,Yjk+1, . . . ,Yk1+b−1. This gives us

the bootstrap vector process

Y∗
2 = [X∗2

1 , X∗2
2 ]′,Y∗

3 = [X∗2
2 , X∗2

3 ]′, . . . ,Y∗
T = [X∗2

T−1, X
∗2
T ]′.
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Confidence intervals for ACF of squared returns (cont 3.)

Block Bootstrap.

4. The bootstrap sample autocovariances are computed according to

standard formula with the Xt replaced by the X∗
t defined above. The

empirical distribution of ρ̂∗T,X2(1) is then an approximation to the

distribution of ρ̂T,X2(1).

5. The quantiles of the empirical distribution of |ρ̂∗T,X2(1) − ρ̂T,X2(1)| can

be used to construct symmetric confidence intervals.
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Confidence intervals for ACF of squared returns (cont 4.)

Subsampling

Denote

Ut = X2
t −

1

T

T
∑

j=1

X2
j

s2
T (h) =

1

T

T−h
∑

j=1

(Uj+h − ρ̂T (h)Uj)
2
, σ̂2

T (h) =
s2

T (h)
∑T

j=h U2
j

and consider the studentized statistic ξ̂T = ρ̂T (h)−ρT (h)
σ̂T (h) .

To construct equal-tailed and symmetric confidence intervals, we would

need to know the sampling distribution of ξ̂T and |ξ̂T |, respectively.

We use subsampling to approximate these distributions.
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Confidence intervals for ACF of squared returns (cont 5.)

Subsampling

Consider an integer b < T and the T − b + 1 blocks of data

X2
t , . . . , X2

t+b−1, t = 1, . . . , T − b + 1.

From each of these blocks compute ρ̂b,t(h) and σ̂b,t(h), but replacing the

original data X1, . . . , XT by Xt, . . . , Xt+b−1.

Compute the subsampling counterpart of the studentized statistic

ξ̂b,t(h) =
ρ̂b,t(h) − ρ̂T (h)

σ̂b,t(h)
and construct the EDF

Lb(x) =

∑T−b+1
t=1 1

{

ξ̂b,t(h) ≤ x
}

N−1
b

, Lb,|·|(x) =

∑T−b+1
t=1 1

{

|ξ̂b,t(h)| ≤ x
}

N−1
b

,

with Nb = T − b + 1. The empirical quantiles of Lb and Lb,|·| allow us to

construct, respectively, equal-tailed and symmetric confidence intervals.

For example, denoting by qb,|·|(1 − α) the (1 − α)th quantile of Lb,|·|, a

subsampling symmetric 1 − α level confidence interval for ρT (h) is
(

ρ̂T (h) − σ̂T (h)qb,|·|(1 − α), ρ̂T (h) + σ̂T (h)qb,|·|(1 − α)
)

.
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General Framework: GARCH–type processes

Xt = σtZt, E(Zt) = 0, Var(Zt) = 1,

σ2
t = g(Zt−1) + c(Zt−1)σ

2
t−1

with different specifications for the conditional skedastic function:

1. GARCH(1, 1) process

ct−1 = β + αZ2
t−1, σ2

t = ω + βσ2
t−1 + αX2

t−1.

2. The GJR-GARCH(1, 1) model, with

ct−1 = β+(α+φI(Zt−1))Z
2
t−1, σ2

t = ω+(α+φI(Zt−1))X
2
t−1 +βσ2

t−1,

where I(Zt−1) = 1 if Zt−1 < 0, and I(Zt−1) = 0 otherwise.

3. The nonlinear GARCH(1,1) model (NL GARCH(1,1,2), with

ct−1 = β + α(1 − 2η sign(Zt−1) + η2)Z2
t−1;

σ2
t = ω + α(1 − 2η sign(Zt−1) + η2)X2

t−1 + βσ2
t−1.
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General Framework: GARCH–type processes (cont. 1)

We denote γci = Eci(Zt). The fourth unconditional moment of Xt exists if

and only if γc2 = Ec2
t ∈ [0, 1].

For the three processes considered here, if we assume that Zt ∼ N(0, 1),

the values of γc2 and ρX2(1) can be computed in a closed form.

If we know the model parameters, we can calculate precisely the

population autocorrelation ρX2(1) and the value of γc2.

For each of the three models, we considered five parameter choices, which

we labeled as models 1 through 5.

The lag one autocorrelations for these choices are, respectively,

approximately equal to .15, .22, .31, .4, .5.

The corresponding values of γc2 are respectively, approximately equal to .1,

.3, .5, .7, .9.
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Simulation Results

We investigate the performance of the three methods by comparing the

empirical coverage properties (ECP) for the 15 data generating processes

(3 models × 5 parameter choices)

To facilitate comparison, models with the same index have similar values of

γc2 and ρX2(1), e.g. standard GARCH and GJR-GARCH with index 3

both have γc2 ≈ .5 and ρX2(1) ≈ .31.

Consider

• Four sample sizes, T = 100, 250, 500, 1000.

• Confidence intervals of 95 %
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Simulation Results (cont 1.) Residual Bootstrap

Table 1: ECP of symmetric confidence intervals constructed using residual

bootstrap.

T e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%)

STD GARCH 1 2 3 4 5

100 99.6 85.3 86.0 80.4 77.4

250 92.9 91.3 92.1 89.4 84.4

500 93.4 93.4 94.1 93.7 92.7

1000 95.1 96.8 97.6 97.6 94.4

GJR GARCH 1 2 3 4 5

100 97.7 94.8 92.0 89.5 81.5

250 96.2 96.6 97.0 96.4 92.3

500 98.3 99.2 98.9 99.1 96.5

1000 99.0 99.4 99.6 99.8 98.8
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Simulation Results (cont 2.)

Table 2: ECP of symmetric confidence intervals constructed using residual

bootstrap.

T e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%)

NL GARCH 1 2 3 4 5

100 95.5 83.8 79.8 74.7 66.0

250 91.7 87.3 84.3 81.0 73.6

500 91.7 93.1 88.5 82.1 77.3

1000 96.4 93.3 92.9 87.0 81.0
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Simulation Results (cont 3.)

• Equal tailed and symmetric confidence intervals perform equally well

for standard GARCH and GJR–GARCH,

• For NL–GARCH, symmetric confidence is better than equal tailed,

• The ECP decreases as γc2 approaches 1. (γc2 < 1 is required for the

population autocovariances to exist)

• For the NL–GARCH, results are unsatisfactory except when γc2 < .3

• Bad results for the NL–GARCH model can be caused by parameter

identification problems: when η is large, parameter biases are very

large. (Furthermore, large η corresponds to large γc2).

• These identification problems are less severe for the GJR–GARCH.
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Simulation Results (cont 4.)
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Figure 1: Comparison of ECP’s for symmetric residual bootstrap confidence

intervals based on standard GARCH and a correct specification. The nomi-

nal coverage of 95% is marked by the solid horizontal line. The sample size

is T = 500.
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Simulation Results (cont 5.)

• Figure 1 shows that estimating the standard GARCH model on all

three DGP’s might lead to improvements in ECP’s, for symmetric

confidence intervals and series of length 500.

• The results for other series lengths look very much the same and are

therefore not presented.

• The residual bootstrap method works best if symmetric confidence

intervals are used and the standard GARCH model is estimated.

• Thus, in our context, misspecifying a model improves the performance

of the procedure.
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Simulation Results (cont 6.)

Table 3: ECP of symmetric confidence intervals based on the block bootstrap

method for the five parameter choices in the GJR-GARCH model.

Model 1 2 3 4 5

T b e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%)

500 3 87.0 82.0 78.4 65.5 61.4

5 89.1 83.8 73.4 63.0 58.5

10 87.9 81.8 71.4 60.6 51.9

15 84.5 78.7 71.8 63.8 52.7

30 85.6 79.0 69.6 61.3 50.0

1000 5 87.7 84.4 75.2 67.9 59.6

10 88.6 85.1 70.8 61.0 52.6

15 89.7 83.0 72.7 63.6 53.3

30 87.8 80.9 72.7 59.7 51.2
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Simulation Results (cont 7.)

• Empirical coverage probabilities are too low for all the choices of T

and b,

• ECP are in the range [0.80, 0.90] only for γc2 < 0.3,

• ECP are slightly above 50% when γc2 = 0.9,

• We recommend using b = 3, 5, although results do not depend too

much on the choice of b,

• QML estimator underestimate the true value of the autocorrelation,

which causes under–coverage.
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Simulation Results (cont 8.)

Table 4: Empirical coverage probabilities of symmetric confidence interval based

on the subsampling method for the five parameter choices in the NLGARCH model.

Sample size T = 500.

Model 1 2 3 4 5

b e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%)

3 97.2 95.3 91.6 82.3 70.4

6 94.1 95.5 79.9 67.9 51.5

8 90.1 83.0 75.1 63.3 50.2

10 85.4 80.9 71.4 57.5 44.5

50 80.2 76.1 63.9 54.1 41.2



'

&

$

%

Simulation Results (cont 9.) Subsampling.

• Symmetric CI have a much better ECP than equal tailed CI,

• Subsampling method is very sensitive to the choice of b,

• Choosing small b, e.g., b = 3, 6, we get ECP close to 95% for γc2 < 0.6,

and fair coverage for higher values of γc2.

• Such low value for b is surprising, as autocovariances are computed

from very short sub–series,

• ECP are too low for equal tailed CI, and as γc2 approaches one, ECP

tends to 10%.
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Simulation Results (cont 10.)
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Figure 2: Comparison of ECP’s for symmetric confidence intervals. The

nominal coverage 95% is marked by solid horizontal line. The series length

is T = 1000. For block bootstrap, b = 5, for subsampling b = 3.
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Conclusion and practical recommendations

• The best method is residual bootstrap with the assumption that the

model is a standard GARCH(1,1),

• The residual bootstrap confidence intervals based on a misspecified

model can produce good coverage probabilities.


