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Abstract

We introduce a new statistic written as a sum of certain ratios of second-order increments of partial sums
process Sn =∑n

t=1 Xt of observations, which we call the increment ratio (IR) statistic. The IR statistic can

be used for testing nonparametric hypotheses for d-integrated (− 1
2 < d < 3

2 ) behavior of time series Xt ,

including short memory (d =0), (stationary) long-memory (0 < d < 1
2 ) and unit roots (d =1). If Sn behaves

asymptotically as an (integrated) fractional Brownian motion with parameter H = d + 1
2 , the IR statistic

converges to a monotone function �(d) of d ∈ (− 1
2 , 3

2 ) as both the sample size N and the window parameter
m increase so that N/m → ∞. For Gaussian observations Xt , we obtain a rate of decay of the bias EIR−�(d)

and a central limit theorem (N/m)1/2(IR−EIR) → N(0, �2(d)), in the region − 1
2 < d < 5

4 . Graphs of the
functions �(d) and �(d) are included. A simulation study shows that the IR test for short memory (d = 0)
against stationary long-memory alternatives (0 < d < 1

2 ) has good size and power properties and is robust
against changes in mean, slowly varying trends and nonstationarities. We apply this statistic to sequences of
squares of returns on financial assets and obtain a nuanced picture of the presence of long-memory in asset
price volatility.
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1. Introduction

The paper introduces a new statistic

IR := 1

N − 3m

N−3m−1∑
k=0

∣∣∣∑k+m
t=k+1(Xt+m − Xt) +∑k+2m

t=k+m+1(Xt+m − Xt)

∣∣∣∣∣∣∑k+m
t=k+1(Xt+m − Xt)

∣∣∣+ ∣∣∣∑k+2m
t=k+m+1(Xt+m − Xt)

∣∣∣ , (1.1)

with the convention 0
0 := 1. Here, X1, . . . , XN is a given sample of length N and m = 1, 2, . . .

is a bandwidth parameter. We call (1.1) the increment ratio (IR) statistic, since the sums in the
numerator and denominator in (1.1) are second-order increments, or differences, of partial sums
Sn :=∑n

t=1 Xt . In fact, (1.1) can be rewritten as the integral:

IR = 1

(N/m) − 3

∫ (N/m)−3

0

∣∣�2S[m�] + �2S[m(�+1)]
∣∣∣∣�2S[m�]

∣∣+ ∣∣�2S[m(�+1)]
∣∣ d�, (1.2)

where �f (�) := f (� + 1) − f (�), �2f (�) := �(�f (�)) is the difference operator.
By definition, the IR statistic is always bounded by 0 and 1: 0�IR�1 a.s. It is also location

and scale free, i.e., does not change when Xt is replaced by an arbitrary linear combination
aXt + b, where a �= 0, b are arbitrary constants. Empirical simulations show that the IR statistic
is quite insensitive to trends, local nonstationarities and heavy tails, see Section 3 below. The
limit of the IR statistic as N, m, N/m → ∞ is related to the limit behavior of a (rescaled) partial
sums process S[m�], � ∈ [0, ∞), or the differenced process �2S[m�], � ∈ [0, ∞). In particular, if
Xt is stationary and its partial sums process converges to a fractional Brownian motion (fBm)
Bd+.5(�), � ∈ [0, ∞) with (Hurst) parameter d + .5 ∈ (0, 1), in the way described in Assumption
1 (Section 2), the IR statistic converges in probability to the expectation

�(d) := E

[ |Zd(0) + Zd(1)|
|Zd(0)| + |Zd(1)|

]
, (1.3)

where (Zd(0), Zd(1)) have a jointly Gaussian distribution, with zero mean, unit variances and
the covariance

�(d) := cov(Zd(0), Zd(1)) = −9d+.5 + 4d+1.5 − 7

2(4 − 4d+.5)
. (1.4)

A similar convergence to the function �(d) in (1.3) holds also in the case when Xt is nonstationary
but the differenced process Ut := Xt − Xt−1 is stationary and the partial sums of Ut tends, in the
way described in Assumption 2 (Section 2), to a fBm Bd−.5 with Hurst parameter d − .5 ∈ (0, 1).
The limit function �(d) is defined in (1.3) for all −.5 < d < 1.5, d �= .5, where

Zd(�) := 1√|4 − 4d+.5|

{
�2Bd+.5(�), −.5 < d < .5,√

2d(2d + 1)
∫ 1

0 �Bd−.5(� + s) ds, 5 < d < 1.5,
(1.5)

is a stationary Gaussian process with continuous time � ∈ R, with zero mean unit variance and
the covariance

EZd(0)Zd(�) = 1

2(4d+.5 − 4)
�2

s�
2
t |t − s|2d+1

∣∣∣∣
t−s=�

. (1.6)
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Fig. 1. The graph of �(d).

(For d = .5, (1.3)–(1.6) exist as the corresponding limits when d tends to .5). We call the process
Zd(�) a second increment fBm. The function �(d) is strictly monotone increasing on (−.5, 1.5)

(see the graph in Fig. 1) and can be explicitly written as

�(d) = �0(�(d)),

where

�0(r) := 2

�
arctan

(√
1 + r

1 − r

)
+ 1

�

√
1 + r

1 − r
log

(
2

1 + r

)
. (1.7)

The above-mentioned consistency property of the IR statistic is very general and essentially
uses only a “fBm asymptotics’’ of the partial sums process S[m�], see Section 2 for details. To
obtain more detailed information concerning convergence rates and the asymptotic distribution
of the IR statistic, we assume that Xt is a Gaussian process. Theorem 2.4 obtains the decay rate
of the bias EIR−�(d), as the window parameter m → ∞, under semiparametric assumptions on
the spectral density of stationary processes Xt (case −.5 < d < .5) and Ut = Xt − Xt−1 (case
.5 < d < 1.5). Under similar assumptions on Xt and Ut we obtain the central limit theorem:

(N/m)1/2(IR − EIR) →D N (0, �2(d)) (N, m, N/m → ∞), (1.8)

see Theorem 2.5 where

�2(d) := 2
∫ ∞

0
cov

( |Zd(0) + Zd(1)|
|Zd(0)| + |Zd(1)| ,

|Zd(�) + Zd(� + 1)|
|Zd(�)| + |Zd(� + 1)|

)
d�, (1.9)

and where Zd(�) is defined in (1.5). The CLT in (1.8) holds for −.5 < d < 1.25, d �= .5. (For
d ∈ (1.25, 1.5) the integral in (1.9) diverges and the CLT in (1.8) most likely fails.) The graph of
�(d) obtained with the help of Mathematica 4.0 is shown in Fig. 2.

The above-mentioned results suggest using the IR statistic for testing various nonparametric
hypotheses, e.g., stationary short memory vs. stationary long memory, stationary long-memory
vs. nonstationary unit root, etc. Several statistics and tests have been proposed in the literature for
testing such hypotheses. Among them, we mention the score test [52], the Lagrange multiplier
test [43], the modified R/S statistic [42], the KPSS statistic [35], the V/S statistic [23,24]. The
last three statistics are essentially based on fBm-type behavior of the partial sums process of Xt ;
however, their limit distributions are nonGaussian and normalizations depend on the (possibly
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Fig. 2. The graph of �(d).

unknown) memory parameter d. Section 3 provides a finite sample simulation study of the IR test
of short memory (d = 0) vs. long-memory (d > 0), with the critical region

IR − �(0) > z��(0)

√
m

N − 3m
, (1.10)

where �(0) ≈ .5881, �(0) ≈ .2080, and z� is the standard normal quantile.We study the empirical
size of the test (1.10) under “AR + stochastic trend’’ and “AR + deterministic trend’’ models, the
empirical power under “FARIMA with memory breaks’’ model, and the robustness of that test
under nonstationary models and heavy-tailed �-stable distributions.

Long-range dependent processes can be confused with trended processes and change-point
processes; see e.g., Bhattacharya et al. [8]. One can distinguish between these alternatives by
resorting to estimators of the long-range dependent parameter that are robust to the presence of
trends, change-points and nonstationarities. Abry and Veitch [3] introduced a wavelet estimator
of the memory parameter robust to deterministic linear and polynomial trends, which works for
large samples, e.g., N = 10 000; see also Abry et al. [2], Teyssière and Abry [57]. However, the
asymptotic variance of this estimator depends on the memory parameter and the corresponding
confidence intervals with the sample size used in this paper (N = 1000) are inconclusive; see
also Bardet et al. (2000).

Künsch [34] and later Sibbertsen [53] proposed procedures for discriminating between trends
and long-range dependence based on the periodogram. Since tapering the periodogram allows to
get rid of small trends and slowly varying trends, the discrepancy between the spectral estimates
obtained with and without tapering the periodogram constitutes an evidence of spurious long-
range dependence.

Dolado et al. [20] proposed an extension of the fractional Dickey–Fuller test for long-range
dependence against the alternative of short-range dependence, robust to the presence of a single
break. Recently, Berkes et al. [7] proposed a CUSUM test for discriminating between long-range
dependence and change-points, including the case multiple change-points. This is of interest when
dealing with large samples, as for large samples the occurrence of a single change-point is unlikely.
We then compare the performance of our test with this one for the case of nonhomogeneous
processes.

Comparisons with theV/S and Robinson’s [52] tests are provided, indicating that in the presence
of stochastic trend, deterministic trends or change-points, the IR test clearly outperforms the other
tests.
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The robustness of the IR test with respect to change-points and other structural changes can be
explained by the fact that the IR statistic uses “local data’’ or “moving’’ subsamples of length 3 m,
while other above-mentioned tests use “global’’quantities such as the sample mean or periodogram
estimates. In the case of a few change-points, only a small fraction of subsamples of length 3 m
(ratios in (1.1)) near the change points feel the changes. On the other hand, the sample mean can
be severely affected by a single change in the mean.

The present study can be extended into several directions. From the theoretical point of view,
it is desirable to relax the Gaussianity assumption, e.g., by extending Theorems 2.4 and 2.5 to
moving averages Xt in general iid innovations. The cases of stationary weakly dependent Xt

(corresponding to d = 0) and stationary weakly dependent Ut = Xt − Xt−1 (corresponding
to d = 1) are of particular interest, where the distributional assumptions on Xt should be kept
to minimum. The IR statistic in (1.1) allows for a number of modifications which in principle
might have better asymptotic or finite sample properties. Further generalizations may involve
observations in continuous and/or multidimensional time (random fields). We hope to study some
of these issues in the future.

The paper is organised as follows: Section 2 provides asymptotic results, Section 3 studies
the size, power and robustness of the IR statistic, and provides comparisons with other statistics.
An application of this statistic to real data is given in Section 4. The proofs of all statements in
Section 2 and the properties of the second increment of fBm are relegated in Sections 5 and 6,
respectively.

2. Asymptotic results

In this section, we introduce general Assumptions (A1) and (A2) which guarantee the conver-
gence of the IR statistic to the function �(d) in (1.3) (see Proposition 2.1). Neither Gaussianity
nor stationarity of the observations is required by these assumptions. Write →D (respectively,
→FDD) for weak convergence of distributions (respectively, of finite dimensional distributions).
Recall that a fBm with Hurst parameter 0 < H < 1 is a Gaussian process BH (�), � ∈ R, with
zero mean and the covariance

EBH (�1)BH (�2) = 1
2

(
|�1|2H + |�2|2H − |�1 − �2|2H

)
. (2.1)

Assumption (A1). For −.5 < d < .5, there exists a constant G(d) �= 0 and normalizations
Gm = Gm(d) → ∞, Am = Am(d) such that

G−1
m

⎛⎝ [m(T1+�1)]∑
t1=1+[mT1]

(Xt1 − Am),

[m(T2+�2)]∑
t2=1+[mT2]

(Xt2 − Am)

⎞⎠
→FDD G(d)(B1

d+.5(�1), B
2
d+.5(�2)) (2.2)

as m, T1, T2 − T1 → ∞, where B1
d+.5, B

2
d+.5 are independent copies of fBm Bd+.5 with Hurst

parameter H = d + .5 ∈ (0, 1).

Assumption (A2). For .5 < d < 1.5, there exists a constant G(d) �= 0 and a normalization
Gm = Gm(d) → ∞ such that

G−1
m

(
X[m(T1+�1)] − X[mT1], X[m(T2+�2)] − X[mT2]

)
→FDD G(d)(B1

d−.5(�1), B
2
d−.5(�2)) (2.3)
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as m, T1, T2 − T1 → ∞, where B1
d−.5, B

2
d−.5 are independent copies of fBm Bd−.5 with Hurst

parameter H = d − .5 ∈ (0, 1). Moreover, there exists a constant C2 < ∞ such that for any
m, j �1

E(Xm+j − Xj)
2 �C2G

2
m. (2.4)

Proposition 2.1. (i) Let Assumption (A1) be satisfied, −.5 < d < .5. Then, as N → ∞, m →
∞, m/N → 0

EIR → �(d), (2.5)

where the function �(d) is defined in (1.3). Moreover,

E(IR − �(d))2 → 0. (2.6)

(ii) Let Assumption (A2) be satisfied, .5 < d < 1.5. Then, as N → ∞, m → ∞, m/N → 0,
relations (2.5) and (2.6) hold. The function �(d) is defined in (1.3), with Zd(0), Zd(1) as in (1.5).

In the literature, convergence of partial sums towards a fBm has been proved for a number
of linear and nonlinear (stationary and nonstationary) processes. See Davydov [18], Taqqu [55],
Ho and Hsing [31], Giraitis et al. [26], Giraitis and Surgailis [28], Philippe et al. [49–51] and
the references therein. A new feature of Assumptions (A1)/(A2) concerns the asymptotic inde-
pendence of increments of partial sums separated by long interval T = T2 − T1 → ∞ (i.e., the
independence of the limiting fBm’s). For Gaussian processes, Assumptions (A1)/A(2) can be
easily verified; see Proposition 2.2 below. Csörgő and Mielniczuk [16], Bružaitė and Vaičiulis
[12] discuss the validity of Assumption (A1) for Gaussian subordinated and linear processes.

Proposition 2.2. (i) Let Xt be a stationary Gaussian process having spectral density f (x) such
that

f (x) = L(1/|x|)|x|−2d , (2.7)

where −.5 < d < .5 and L is slowly varying at infinity. Then Xt satisfies Assumption (A1), with
G2

m = L(m)m2d+1, Am = EX0 and G2(d) = K(d + .5), where

K(H) := �

H�(2H) sin(H�)
. (2.8)

(ii) Let Ut = Xt − Xt−1 be a stationary Gaussian process having spectral density f (x) such
that

f (x) = L(1/|x|)|x|2−2d , (2.9)

where .5 < d < 1.5 and L is slowly varying at infinity. Then Xt satisfies Assumption (A2), with
G2

m = L(m)m2d−1, G2(d) = |K(d − .5)| and K(H) as in (2.8).

Let us note that Assumption (A1)(respectively, (A2)) refers to “distant increments’’ of partial
sums of the observations (respectively, of the observations themselves) on intervals of length
O(m) which are far away from each other and also from the origin, due to the fact that T1 →
∞, T2 − T1 → ∞. Therefore (A1)/(A2) may apply also in the case when the limit of partial
sums is a process with asymptotically stationary increments (see [51,11] for the definition and
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examples of such processes). In particular, consider a d-integrated (d > −.5) process Xt defined
as a solution of (1 − L)dXt = �t I{t �1}:

Xt =
t∑

s=1

�(t − s)�s , �(j) := �(j + d)

�(j + 1)�(d)
(j �0), (2.10)

where LXt = Xt−1 is the backward shift, I denotes the indicator function, �(j)(j �0) are the
coefficients of FARIMA(0, d, 0) filter, and where �t , t ∈ Z are standard iid random variables,
with zero mean and variance 1. One can show (see [44] and the references therein) that for any
d > −.5

m−d−.5
[m�]∑
t=1

Xt →FDD
1

�(d)

∫ �

0
(� − x)dM(dx), (2.11)

where M(dx) is a standard Gaussian white noise (see Section 6). The limit process in (2.11) is
called a type II fBm [44] and has asymptotically stationary increments tending to increments of
a (usual) fBm [51].

Proposition 2.3. Let Xt be the moving average in (2.10), d ∈ (−.5, 1.5), d �= .5. Then Xt

satisfies (A1)/(A2).

In the remainder of this section we assume that the time series Xt, t = 1, . . . , N is a Gaussian
process. This assumption and the following assumptions on the covariance structure of Xt allows
us to obtain a convergence rate of the bias EIR−�(d), as well as a central limit theorem for the IR
statistic, when N and m increase in a suitable way. We separately discuss the cases (i) −.5 < d < .5
and (ii) .5 < d < 1.5. In Case (i), we assume that Xt is a stationary Gaussian process, while
in Case (ii), we assume that Xt is an integrated process so that the process Ut = Xt − Xt−1 is
stationary.

Theorem 2.4. (i) Let Xt be a stationary Gaussian process having spectral density f (x) such that
there exist constants c0 > 0, 	 > 0, −.5 < d < .5 such that

f (x) = |x|−2d
(
c0 + O(|x|	)

)
(x → 0). (2.12)

Moreover, assume that f (x) is bounded outside zero frequency, and 0 < 	 < 2d + 1. Then

EIR − �(d) = O(m−	). (2.13)

(ii) Let Ut = Xt − Xt−1 be a zero mean stationary Gaussian process, with zero mean and
spectral density f (x). Assume that there exist constants c0 > 0, 	 > 0, .5 < d < 1.5 such that

f (x) = |x|2−2d
(
c0 + O(|x|	)

)
(x → 0). (2.14)

Moreover, assume that f (x) is bounded outside zero frequency, and 0 < 	 < 2d − 1. Then
relation (2.13) holds.

Theorem 2.4 is proved in Section 5. Let us explain the main idea of its proof. Define

V 2
m := E

(
m∑

t=1

(Xt+m − Xt)

)2

, (2.15)
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Rm := E

⎛⎝ m∑
t,s=1

(Xt+m − Xt)(Xs+2m − Xs+m)

⎞⎠ . (2.16)

By stationarity, in both cases (i) and (ii)

EIR − �(d) = E

[ |Y 0 + Y 1|
|Y 0| + |Y 1| − |Z0 + Z1|

|Z0| + |Z1|
]

, (2.17)

where

Y 0 := V −1
m

m∑
t=1

(Xt+m − Xt), Y 1 := V −1
m

2m∑
t=m+1

(Xt+m − Xt),

Z0 := Zd(0), Z1 := Zd(1),

are Gaussian variables, with zero mean, unit variances E(Y 0)2 = E(Y 1)2 = E(Z0)2 = E(Z1)2 =
1 and the covariances

EY 0Y 1 = Rm

V 2
m

, EZ0Z1 = �(d), (2.18)

respectively (the variables Zd(0), Zd(1) and �(d) were defined earlier in (1.5)–(1.4)). Using
(2.17) and the Gaussianity, it is easy to show the bound

|EIR − �(d)|�C|EY 0Y 1 − EZ0Z1|, (2.19)

where the constant C does not depend on m. As shown in the proof of Theorem 2.4, under the
assumptions on the spectral density as in (2.12), (2.14), one has the following asymptotics:

V 2
m = c0m

2d+1(V (d) + O(m−	)
)
, (2.20)

Rm = c0m
2d+1(R(d) + O(m−	)

)
, (2.21)

where

V (d) := (4 − 4d+.5)K(d + .5), (2.22)

R(d) := (1/2)
(− 9d+.5 + 4d+1.5 − 7

)
K(d + .5), (2.23)

with K(H) given in (2.8) above. (Note the relation R(d)/V (d) = �(d) and the fact that (2.20)–
(2.23) hold in both cases (i) and (ii).) Clearly, (2.18)–(2.23) imply (2.13).

We now turn to the central limit theorem for the IR statistic.

Theorem 2.5. (i) Let Xt be a stationary Gaussian process whose spectral density f (x) satisfies
condition (2.12), for some −.5 < d < .5, c0 > 0, 	 > 0. Moreover, assume that f (x) is
differentiable on (0, �) and

|f ′(x)|�C|x|−2d−1, (2.24)

where C > 0 is some constant. Then, as N, m, N/m → ∞,

(N/m)var(IR) → �2(d), (2.25)



518 D. Surgailis et al. / Journal of Multivariate Analysis 99 (2008) 510–541

and

(N/m)1/2(IR − EIR) →D N (0, �2(d)), (2.26)

where �2(d) is defined in (1.9).
(ii) Let Xt −Xt−1 = Ut be a stationary Gaussian process whose spectral density f (x) satisfies

(2.14), for some .5 < d < 1.25, c0 > 0, 	 > 0. Moreover, assume that f (x) is differentiable on
(0, �) and

|f ′(x)|�C|x|1−2d , (2.27)

where C > 0 is some constant. Then the relations (2.25) and (2.26) hold.

Let us explain the idea of the proof of the above theorem. Let

Ym(j) := V −1
m

j+m∑
t=j+1

(Xt+m − Xt), (2.28)

where Vm is defined in (2.15). Note, for m fixed, Ym(j), j ∈ Z is a stationary Gaussian process,
with zero mean and unit variance, and

IR = 1

N − 3m

N−3m−1∑
j=0


m(j), 
m(j) := |Ym(j) + Ym(j + m)|
|Ym(j)| + |Ym(j + m)| . (2.29)

The proof of (2.25) and (2.26) uses Hermite expansion of the nonlinear function 
m(j) in Gaussian
variables (2.28). It is easy to see from the definition in (2.29) that the linear terms of the Hermite
expansion are zero and therefore the covariance of 
m(j) behaves as the squared covariance of
Ym(j)’s, which turns to be summable for . − 5 < d < 1.25; see (5.35)–(5.36).

3. The power and robustness of the IR test for short memory: an empirical study

As noted in the Introduction, the IR statistic can be used to test hypotheses about unknown
parameter d, e.g., the null hypothesis H0: d = d0, where d0 ∈ (−.5, 1.25), d0 �= .5. A more
precise meaning of the null hypothesis is that Xt satisfies Assumptions (A1)/(A2) with d =
d0, as well as the additional conditions guaranteeing the asymptotic behavior of the IR statis-
tics as in Theorems 2.4 and 2.5. Obviously, the assumption of Gaussianity in these theorems
is quite restrictive and the IR test needs to be further developed. Nevertheless, an empirical
study of the IR statistic and its performance against other tests for testing similar hypotheses
is clearly of interest. The choice of benchmark tests for IR is somewhat arbitrary and also
limited by the length of the paper. In the present section, we compare the size, power and ro-
bustness of the IR test (1.10) for short memory (d = 0) against the long-range dependent
alternative (d > 0) to the V/S test, the Robinson (1994) test, the CUSUM test of Berkes et
al. [7] and the SB-FDF test. More complete comparison results can be found on the following
web site http://samos.univ-paris1.fr/ppub2005.html#prepub2006, as sup-
plementary material of this paper.

The V/S statistic introduced in Giraitis et al. (2003) is defined as

V

Nŝ2(q)
=

N−1
[∑N

k=1

(∑k
j=1 (Xj − X̄)

)2 − 1
N

(∑N
k=1

∑k
j=1 (Xj − X̄)

)2
]

Nŝ2(q)
. (3.1)

http://samos.univ-paris1.fr/
mailto:ppub2005.html#prepub2006
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The numerator V is an estimator of the variance of the partial sums process, while

ŝ2(q)=�̂(0) + 2
q∑

j=1

(
1− j

q+1

)
�̂(j), �̂(j) := N−1

N−j∑
i=1

(Xi−X̄)(Xi+j−X̄), (3.2)

is a spectral estimator of s2 = ∑
j∈Z cov(X0, Xj ), and q = qN is the bandwidth parameter

satisfying q → ∞, q/N → 0. This estimator of s2 has been used by Lo [42] and Kwiatkowski et
al. [35] for, respectively, the R/S and the KPSS statistic. For all values of q, the V/S statistic has
more power than the KPSS statistic and is less sensitive to q than the R/S statistic; see Giraitis
et al. [22,23] for further details. Thus, we do not consider the R/S and KPSS statistics in this
comparative study.

Under general stationarity and “short memory’’ assumptions on Xt (see [23, Assumption S]),
the V/S statistic has a limit distribution N−1V /̂s2(q) →D W , with

P(W �x) = 1 + 2
∞∑

k=1

(−1)ke−2k2�2x.

A test for short-memory against LRD alternatives has a critical region of the form

V

ŝ2(q)
> c�N, (3.3)

c� being the critical values of this distribution. The V/S statistic was also studied in Leipus and
Viano [41], Giraitis et al. [24,25], Aue et al. [5]. As it should be clear from Eq. (3.2), the V/S
statistic strongly relies on the constancy of the mean X̄. When working with financial data that are
not homogeneous, e.g., volatility series, this assumption is too strong. Although the V/S statistic
solves the issue of extreme sensitivity to q, the issue of sensitivity to changes in X̄ remains.

The score r̂ test developed in Robinson [52] and Gil-Alaña and Robinson [21] tests H0 : d = d0
against the fractional alternative d > d0, for models of the form

�(L)Xt = �t , (3.4)

where �(z) = (1 − z)d and �t is a covariance stationary sequence with zero mean and parametric
spectral density f (
) = (�2/2�)g(
; �) depending on unknown parameters � ∈ Rk and �2. Let

�(
) = Re

{
log
(
�(ei
)

)′
d=d0

}
= log |2 sin(
/2)| , 
 ∈ [−�, �). (3.5)

Define �̃t = (1 − L)d0Xt , I�̃(
) = (1/2�N)

∣∣∣∑N
t=1 �̃te

it

∣∣∣2, 
j = 2�j/N , �̂(
) = (�/��)

log g(
; �̂),

�2(�) = 2�

N

∑
j

I�̃(
j )

g(
j ; �)
, �̂2 = �2(̂�), â = −2�

N

∑
j

′
�(
j )

I�̃(
j )

g(
j ; �̂)
,

Â = 2

N

⎛⎜⎝∑
j

′ ∣∣�(
j )
∣∣2 −

∑
j

′
�(
j )̂�(
j )

′
⎧⎨⎩∑

j

′
�̂(
j )̂�(
j )

′
⎫⎬⎭

−1∑
j

′
�̂(
j )�(
j )

⎞⎟⎠ ,
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where the sum
∑

j (respectively,
∑′

j ) is taken over all 
j ∈ (−�, �) (respectively, over all


j ∈ (−�, �), 
j �= 0), and �̂ is a consistent estimator of �. Note �̃t = Xt for testing the short
memory hypothesis d = 0. The score r̂ statistic is defined as

r̂ = N1/2

�̂2 Â−1/2â. (3.6)

Under H0: d = d0 and some additional assumptions on �t in (3.4), see Robinson [52], r̂ →D
N (0, 1), and a critical region is given by

r̂ > z�, (3.7)

where z� is the standard normal quantile.
In our study, d0 = 0 and �t is a weakly dependent AR(k) process, i.e., g(
; �) =∣∣∣1 −∑k

j=1 �j eij

∣∣∣−2

, � = (�1, . . . , �k), with k = 1 and 3. Results for AR(k) for other values

of k and for the Bloomfield process can be found at http://samos.univ-paris1.fr/
ppub2005.html#prepub2006, as supplementary material of this paper.

The MN statistic of Berkes et al. [7] is based on a change-point estimator and two CUSUM
statistics applied to the sub-samples before and after the detected change-point. The last paper
extends this statistic to the case of multiple change-points, using a binary segmentation procedure.

3.1. Stochastic and deterministic trends

The empirical sizes (probabilities of Type I error) of the tests (1.10), (3.3) and (3.7) are studied
for short memory observations Xt of the form

Xt = Yt + ft,N , t = 1, . . . , N, (3.8)

Yt = aYt−1 + εt , εt ∼ iid N (0, 1), (3.9)

ft,N =
t∑

i=1

bi,Nci, ci ∼ iid N (0, b2), bi,N iid Bernoulli, (3.10)

i.e., Xt is the sum of an AR(1) process Yt and a stochastic trend ft,N with P(bi,N = 1) = �N =
1 − P(bi,N = 0). The three processes {εi, 1� i�N}, {bi,N , 1� i�N} and {ci, 1� i�N} are
mutually independent. Model (3.8), called a mixture model in the literature, can generate the
so-called “spurious long-memory’’ effect; see Diebold and Inoue [19], Granger and Hyung [30].
The V/S test in the presence of stochastic trend (3.10) was studied in Leipus and Viano [41], Aue
et al. [5]. For a = b = 0 this is an iid process, while for b = 0, this is a weakly dependant process,
that tends to a process with a unit root as a tends to one.

Table 1 illustrates empirical sizes of the IR, the V/S and the score tests at the level � = 5%
under the model (3.8) for N = 1000, and selected values of parameters a, b; the probability of
“trend jump’’ is �N = 5/N = 0.005 in all samples. The choice of q in the range N1/3 to N1/2,
as a reasonable compromise between size and power distortions for the V/S test, was suggested
in Giraitis et al. [23,24]. Our simulations suggest a similar choice of m = O(N1/3) to O(N1/2)

for the IR statistic.
The results in Table 1 indicate that in the absence of a trend (b = 0), the V/S test has a

better size than the IR test, mainly for the highest values of the parameter a and the smallest
windows m = q = 10. Note also that for the highest values of a and b, the r̂ test with the AR(k)

specifications has a better size than both the IR and V/S tests. However, for lower values of a

http://samos.univ-paris1.fr/
mailto:ppub2005.html#prepub2006
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Table 1
Frequency of rejection of the null hypothesis of short memory for sequences of AR(1) + mixture trend processes, having
on average 5N (0, b2)-distributed jumps in a sample, (�N = 5/1000). Test size 5%

a b V/S IR r̂ ,�t ∼ AR(k)

q = 10 q = 30 m = 10 m = 30 k = 1 k = 3

0.0 0.0 0.0444 0.0363 0.0515 0.0465 0.0795 0.0691
0.0 0.2 0.6709 0.6062 0.0566 0.0914 0.6838 0.6987
0.0 1.0 0.9581 0.9103 0.1833 0.4669 0.9516 0.6868
0.2 0.0 0.0531 0.0387 0.0845 0.0560 0.0777 0.0686
0.2 0.2 0.5947 0.5286 0.0874 0.0848 0.5974 0.6015
0.2 1.0 0.9484 0.8969 0.2026 0.4120 0.9288 0.7514
0.4 0.0 0.0648 0.0417 0.1351 0.0679 0.0719 0.0675
0.4 0.2 0.4885 0.4125 0.1438 0.0834 0.4706 0.4660
0.4 1.0 0.9292 0.8724 0.2410 0.3394 0.8945 0.7981
0.6 0.0 0.0867 0.0472 0.2802 0.0885 0.0685 0.0667
0.6 0.2 0.3636 0.2679 0.2854 0.0946 0.2873 0.2841
0.6 1.0 0.8893 0.8146 0.3634 0.2689 0.8076 0.8070
0.8 0.0 0.1836 0.0680 0.8023 0.1483 0.0940 0.0555
0.8 0.2 0.2918 0.1422 0.7960 0.1492 0.1104 0.1168
0.8 1.0 0.7929 0.6545 0.8163 0.2231 0.1916 0.5735

N = 1000 (based on 10000 replications).

Table 2
Frequency of rejection of the null hypothesis of short memory for sequences of a process with a deterministic trend and
a possible break

c0 c1 V/S IR r̂ ,�t ∼ AR(k)

q = 10 q = 30 m = 10 m = 30 k = 1 k = 3

0.001 0.0 0.0444 0.0363 0.0548 0.0654 1.0000 1.0000
0.001 0.002 1.0000 1.0000 0.0581 0.2043 1.0000 1.0000

Test size 5%. N = 1000 (based on 10 000 replications).

(a < 0.8) and in the presence of a trend, the IR test has a better size than the two other tests.
The size of the V/S test rapidly deteriorates as b increases, while the IR test shows a much better
robustness to trends for the largest values of the bandwidth parameters m and q. Note that the
bandwidths m and q are not directly comparable.

We also consider the case of deterministic trends, with a possible break at time t = [�N ]
Xt = X0 + c0t + c1I{t>[�N ]}(t − [�N ]) + εt , � ∈ (0, 1), εt ∼ iid N (0, 1). (3.11)

We set � = 0.5, i.e., the break in the trend occurs in the middle of the sample.
From Table 2 we may conclude that the IR test is far more robust to deterministic trends than

both the V/S and the score r̂ tests.
Dolado et al. [20] studied the power of their test only for a process similar to the one defined

by Eq. (3.11), so that we study the performance of their test for that process. Note that the null
hypothesis of their test is that the process is I(d), and the alternative hypothesis is that the process
is I(0) with a single break, so that it is not directly comparable with the IR, V/S and r̂ score tests
(Table 3).
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Table 3
Frequency of rejection of the null hypothesis of I(d) for sequences of a process with a deterministic trend and a break,
i.e., c0 = 0.001 c1 = 0.002

d Model B Model C

0.40 1.0000 1.0000
0.30 1.0000 1.0000
0.20 1.0000 1.0000
0.10 0.8832 0.8749

Test size 5%. N = 1000 (based on 10 000 replications).

Model B corresponds to the “changing growth’’ model,

Xt = � + �1t + (�2 − �1)DN�
t + εt , DN�

t = I(t>[N ]),

i.e., under the alternative hypothesis, the slope of the trend changes without change in the level,
while Model C corresponds to “the changing growth with crash’’ model,

Xt = �1 + �1t + (�2 − �1)DNt + (�2 − �1)DUt + εt ,

DNt = tI(t>[�N ]), DUt = I(t>[�N ]),
i.e., under the alternative hypothesis there is a change in both the level and slope of the trend;
see Perron [47] for further details. This test always rejects the null hypothesis of I(d) process for
d = 0.40, 0.30, 0.20, and nearly 90% of the times the null hypothesis d = 0.10.

Teyssière and Abry [59] studied the performance of the wavelet estimator on a more general
process: an additive combination of a fractionally integrated process and a broken polynomial
trend. The wavelet estimator was not fooled by the overimposition of the broken polynomial trend,
and estimation biases were of the same order as the ones for the process without trend and break,
provided that the number of vanishing moments of the mother wavelet is large enough.

3.2. Robustness to memory breaks and heavy tails

Consider the so-called “FARIMA (0, d, 0) with memory breaks’’ model, defined by

Xt = εt +
∞∑

j=1

εt−j�(j)

j∏
i=1

(1 − bt−i,N ), εt ∼ iid N (0, 1), (3.12)

where �(j) are the FARIMA(0, d, 0) coefficients, see (2.10), and bt,N are iid Bernoulli as in
(3.10). Conditionally on bi,N , i ∈ Z, the process in (3.12) is nonstationary and satisfies the
FARIMA(0, d, 0) equation (1 − L)dXt = εt on intervals tk � t < tk+1 between consecutive
moments tk with btk,N = 1, with zero “initial condition’’ Xu = 0, u < tk; moreover, Xt, t � tk
are conditionally independent of εu, u < tk . The moments tk can be thus identified with “memory
breaks’’. If the probability �N = P(b0,N = 1) = c/N is small, there are few “memory breaks’’ in
the interval [1, N ] and their number has approximate Poisson distribution with mean c. Note also
that unconditionally the process Xt in (3.12) is (strictly) stationary and exists for any d ∈ R, unless
P(b0,N = 0) = 1. In the last case, (3.12) is nothing but the usual stationary FARIMA(0, d, 0)
process (d < 0.5).

From Table 5 one may infer that the V/S test has a slightly better power than the IR test under
the “pure FARIMA’’ model with Gaussian (� = 2) innovations. However, the advantage of the
V/S test disappears with the presence of memory breaks, see Table 4, in which case the IR test
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Table 4
Frequency of rejection of the null hypothesis of short memory for sequences of FARIMA(0, d, 0) with memory breaks
processes, with the average distance 333.3 between breaks (�N = 15/5000)

d V/S IR r̂ ,�t ∼ AR(k)

q = 10 q = 30 m = 10 m = 30 k = 1 k = 3

0.40 0.9775 0.8329 1.0000 0.9753 1.0000 0.9998
0.30 0.8946 0.6692 0.9973 0.8602 1.0000 1.0000
0.20 0.6564 0.4363 0.9177 0.5826 1.0000 1.0000
0.10 0.3017 0.2069 0.4678 0.2473 1.0000 0.9458

Test size 5%. N = 5000 (based on 10 000 replications).

Table 5
Frequency of rejection of the null hypothesis of short memory for sequences of FARIMA(0, d, 0) processes with Gaussian
(� = 2) and symmetric �-stable innovations

� d V/S IR r̂ ,�t ∼ AR(k)

q = 10 q = 30 m = 10 m = 30 k = 1 k = 3

2.0 0.30 0.7182 0.4486 0.6752 0.3733 0.9999 0.9238
2.0 0.20 0.4816 0.2809 0.4170 0.2327 0.9956 0.8361
2.0 0.10 0.2209 0.1300 0.1864 0.1199 0.8208 0.4942
2.0 0.00 0.0432 0.0358 0.0514 0.0489 0.0814 0.0698

1.5 0.30 0.7538 0.4851 0.8906 0.5416 0.9979 0.9433
1.5 0.20 0.5228 0.2763 0.6441 0.3362 0.9935 0.8773
1.5 0.10 0.2025 0.1101 0.2773 0.1588 0.8620 0.5232
1.5 0.00 0.0303 0.0245 0.0648 0.0487 0.0508 0.0490

1.25 0.30 0.7920 0.5153 0.9656 0.6851 0.9929 0.9450
1.25 0.20 0.5660 0.2861 0.8093 0.4534 0.9910 0.9011
1.25 0.10 0.1984 0.1016 0.3966 0.2031 0.8971 0.5542
1.25 0.00 0.0224 0.0177 0.0762 0.0544 0.0387 0.0391

Test size 5%. N = 1000 (based on 10 000 replications).

seems to have somewhat better power against fractional alternatives. From Tables 4 and 5 we
conclude that for FARIMA models and models with memory breaks, the r̂ test has a better power
than both the V/S and IR tests.

Table 5 is motivated by applications to financial econometrics, where it is argued that asset
returns, or their squares, may follow a heavy-tailed (e.g., �-stable) distribution. From this table
we can see that for the largest values of m the IR statistic is more robust than the V/S statistic
for �-stable innovations: unlike the V/S statistic, the IR statistic has still the correct size and its
power is not much affected. Surprisingly, the r̂ test is also quite robust to heavy tails and displays
an excellent size-power ratio, at least for the given parametric AR(k) specifications. Abry et
al. [2] observed that the wavelet estimator of the memory parameter is robust to heavy-tailed
distributions.

The above-mentioned robustness of the IR test can be explained by the fact that the limit of the
IR statistic is quite insensitive to heavy tails and asymmetry of the DGP. In the case of iid Xt in the
domain of attraction of a stable law with index 0 < � < 2 and skewness parameter 	 ∈ [−1, 1], the
IR statistic converges to the expectation �(�, 	) = E[|�2Z�,	(0) + �2Z�,	(1)|/(|�2Z�,	(0)| +
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Table 6
Frequency of rejection of the null hypothesis of short memory for sequences of iid N (0, 1) processes

DGP V/S IR r̂ ,�t ∼ AR(k) MN

q = 10 q = 30 m = 10 m = 30 k = 1 k = 3 q = 10 q = 45

DGP A 0.0432 0.0358 0.0514 0.0489 0.0796 0.0705 0.0000 0.0000
DGP B 0.8780 0.8254 0.0562 0.0585 0.7253 0.7830 0.0022 0.0001

Test size 5%. N = 1000 (based on 10 000 replications).

|�2Z�,	(1)|)] where Z�,	(�) is a corresponding Lévy process with independent and homogeneous
increments. Monte-Carlo simulations with large N = 107 show that the “bias’’ �(�, 	) − �(0)

in the IR test (1.10) due to a change of the limiting value of the IR statistic is quite small:
�(1.5, 0)−�(0) ≈ 0.5905−0.5881 = 0.0027, �(1.5, 1)−�(0) ≈ 0.5914−0.5881 = 0.0033,

and does not change much the outcome of the test.

3.3. Robustness to single change-point in the mean of an iid process

We consider the following iid process

Xt = �t + εt , εt ∼ N (0, 1). (3.13)

We consider two cases for �t :

• DGP A: �t = 0 for t = 1, . . . , N ,
• DGP B: �t = 0 for t = 1, . . . , [N/2], �t = 1/4 for t = [N/2] + 1, . . . , N .

From Table 6 we infer that, unlike the V/S and r̂ statistics, the IR statistic is not much affected by
changes in the mean.

The MN statistic of Berkes et al. [7] strongly rejects the hypothesis d > 0 in both cases DGP
A and DGP B, although with this small change in the mean ( 1

4 in the case of DGP B), it rarely
detects the change itself.

3.4. Squares of nonhomogeneous GARCH(1,1) processes

We consider several GARCH(1,1) volatility processes defined as

Xt = �t εt , �2
t = � + 	�2

t−1 + �X2
t−1, (3.14)

with two possible distributions for εt : εt ∼ N (0, 1) and εt ∼ t (7); the latter choice is motivated
by empirical evidence for financial returns; see Bollerslev [9] and Teräsvirta [57].

For one of these processes, the parameters (�, 	, �) are constant so that the unconditional
variance of the process �2 = �/(1 − � − 	) is constant as well. For the other processes, the
parameters (�, 	, �) change at time t = [N/2] with different magnitudes for the change in
the unconditional variance of the process. Mikosch and Stărică (2004), [45] have shown that
nonstationarity in GARCH processes generate spurious long-range dependence in the power
transformation of level series, the intensity of this spurious long-range dependence is positively
correlated with the magnitudes of the changes in the unconditional variance.

• DGP 0: GARCH(1,1):

� = 0.1, 	 = 0.3, � = 0.3.
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• DGP 1: GARCH(1,1) process with abrupt change-point in the middle of the sample (large
changes in the parameters, large change in the unconditional variance):

� = 0.1, 	 = 0.3, � = 0.3 for t = 1, . . . ,

[
N

2

]
(�2 = 0.25), (3.15)

� = 0.15, 	 = 0.65, � = 0.25 for t =
[
N

2

]
+ 1, . . . , N (�2 = 1.5). (3.16)

• DGP 2: GARCH(1,1) process with abrupt change-point in the middle of the sample (large
changes in the parameters, small change in the unconditional variance):

� = 0.1, 	 = 0.3, � = 0.3 for t = 1, . . . ,

[
N

2

]
(�2 = 0.25), (3.17)

� = 0.125, 	 = 0.6, � = 0.1 for t =
[
N

2

]
+ 1, . . . , N (�2 = 0.4667). (3.18)

• DGP 3: GARCH(1,1) process with change-point in the middle of the sample, such that the
unconditional variance �/(1 − � − 	) remains unchanged (�2 = 0.25)

� = 0.1, 	 = 0.3, � = 0.3 for t = 1, . . . ,

[
N

2

]
,

� = 0.15, 	 = 0.25, � = 0.15 for t =
[
N

2

]
+ 1, . . . , N. (3.19)

• DGP 4: Smooth transition GARCH(1,1) process,

�2
t = � + �∗F

(
t,

[
N

2

])
+
(

	 + 	∗F
(

t,

[
N

2

]))
�2

t−1

+
(

� + �∗F
(

t,

[
N

2

]))
X2

t−1, (3.20)

with

� = 0.1, 	 = 0.3, � = 0.3,

�∗ = 0.05, 	∗ = 0.35, �∗ = −0.05, � = 0.05,

where F(t, k) = (1 + exp(−�(t − k)))−1, � is a strictly positive parameter controlling the
smoothness of the transition. If � is large, DGP 4 reduces to DGP 1. We choose here a small
value for �, i.e., the transition between the two processes is smooth.

• DGP 5: The parameters of this DGP are similar to DGP 2. However, there are two change-
points, at times [N

3 ] and [ 2N
3 ], i.e.,

� = 0.1, 	 = 0.3, � = 0.3 for t = 1, . . . ,

[
N

3

]
and

t =
[

2N

3

]
+ 1, . . . , N (�2 = 0.25),

� = 0.125, 	 = 0.6, � = 0.1 for t =
[
N

3

]
+ 1, . . . ,

[
2N

3

]
(�2 = 0.4667).

The behavior of the V/S statistic for the sequences of absolute values |Xt | for the DGP 0,
DGP 1 and DGP 4 has been studied in Teyssière [58]. For DGP 0, the sum of the parameters
	 + � = 0.6, which differs from what is observed with real data. We check whether this choice
does not affect the results of the Monte Carlo experiment by choosing 	 = 0.75 and � = 0.07
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Table 7
Frequency of rejection of the null hypothesis of short memory for sequences of squares X2

t of GARCH(1,1) processes
with N (0, 1) innovations

DGP V/S IR r̂ ,�t ∼ AR(k) MN

q = 10 q = 30 m = 10 m = 30 k = 1 k = 3 q = 10 q = 45

DGP 0 0.0648 0.0379 0.2394 0.0910 0.5621 0.0871 0.0006 0.0000
DGP 1 0.9958 0.9468 0.6153 0.2548 0.9950 0.8714 0.3247 0.0899
DGP 2 0.8507 0.7764 0.2239 0.1090 0.9762 0.8052 0.0119 0.0043
DGP 3 0.0690 0.0465 0.1716 0.0789 0.5046 0.0925 0.0010 0.0000
DGP 4 0.9962 0.9584 0.5753 0.2488 0.9951 0.8801 0.3904 0.1205
DGP 5 0.7844 0.6899 0.2458 0.1390 0.9566 0.7360 0.0009 0.0000

Test size 5%. N = 1000 (based on 10 000 replications).

Table 8
Frequency of rejection of the null hypothesis of short memory for sequences of squares X2

t of GARCH(1,1) processes
with t (7) innovations

DGP V/S IR r̂ ,�t ∼ AR(k) MN

q = 10 q = 30 m = 10 m = 30 k = 1 k = 3 q = 10 q = 45

DGP 0 0.0580 0.0339 0.2435 0.0951 0.5414 0.0906 0.0005 0.0002
DGP 1 0.9707 0.8583 0.8801 0.2369 0.9940 0.8816 0.1591 0.0375
DGP 2 0.6686 0.5730 0.2351 0.1099 0.8980 0.6170 0.0082 0.0019
DGP 3 0.0613 0.0426 0.1852 0.0827 0.4528 0.0922 0.0004 0.0000
DGP 4 0.9729 0.8758 0.5381 0.2251 0.9939 0.8859 0.1735 0.0433
DGP 5 0.5954 0.4884 0.2505 0.1322 0.8734 0.5508 0.0000 0.0000

Test size 5%. N = 1000 (based on 10 000 replications).

from empirical estimation results on homogeneous samples of the S&P 500 index by Mikosch
and Stărică [46]. The empirical size for the IR statistic is equal to 0.2715 and 0.0990 for m = 10
and 30, respectively, while the empirical size for the V/S statistic is equal to 0.0971 and 0.0494
for q = 10 and q = 30 respectively, which are close to the results reported in Table 7.

The GARCH processes satisfy Assumption 2.1 by Berkes et al. [7]. Note that DGP 5 contains
two change-points so that we use their testing procedure in the case of at most two change-
points. The bandwidth parameter q in this statistic is analogous to the V/S case; the choice q =
[15 log10 N ] = 45 is suggested in Berkes et al. [7].

From Tables 7 and 8 we see that, unlike the V/S statistic, the IR statistic is not much affected
by nonstationarities of the GARCH processes. This is of real interest when analyzing the long-
memory properties of the squares of asset prices returns, as the empirical finding of the presence
of long-range dependence in the squares of financial returns might be the consequence of both
nonstationarity in the data and the use of statistical tools not robust to these nonstationarities;
see Mikosch and Stărică [45]. The test r̂ rejects the null hypothesis of an I (0) process when the
unconditional variance of the process is not constant, i.e., for all DGP except DGP 0 and DGP
3. The statistic MN , designed with the purpose to discriminate between change-points and long
memory, performs remarkably well in this context.

Teyssière and Abry [59] carried a wavelet analysis on the squares of DGP 0, DGP 1 and DGP
2, and multiple change-points GARCH processes, and observed that unlike the local Whittle and
log periodogram spectral estimators, the wavelet estimator of the memory parameter is not fooled
by the nonstationarities, and does not detect long-range dependence in the squared series.
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4. Application to financial times series

The discussion below is similar to the so-called “R/S analysis’’, which consists in analyzing
the long-memory properties of financial time series using the R/S statistic. As it has been shown
in Giraitis et al. [23,24], the V/S statistic is more of interest as it is less sensitive to the choice
of the bandwidth parameter q so that the conclusions on the presence of long-range dependence
reached by the investigator do not depend too much on the choice of the bandwidth parameter. As
for the simulation study presented above, we will compare the results of the V/S and IR analysis,
by using their P-values, i.e., the observed size, instead of the standard �%-size tests.

We first consider three series of daily returns X1,t , X2,t , X3,t , where Xi,t = 100 × log(Pi,t /

Pi,t−1), where Pi,t are shares on Bank of America (BoA), Oracle, and SAP, observed between
April 1999 and April 2002, N = 752. For these series, see Table 9, while both the V/S statistic
and the score statistic r̂ detect long-range dependence in the series of squared returns, the results
of the IR statistic lead us to the opposite conclusion: the null hypothesis d = 0 is accepted.

For the BoA series, the test by Berkes et al. [7] detects one change point for q = 5, 10, 15, and
neither change-point nor long-range dependence for q = [15 log10 N ] = 43. For both the Oracle
and SAP series, this test does not detect neither long-range dependence nor change-points for all
values of q.

Consider now a series of financial returns at higher frequency, i.e., 30 min spaced returns on
US dollar/British Pound Foreign Exchange (FX) rate, in ϑ-time (the daily seasonal components
have been removed; see [17], for the definition of ϑ-time) observed in 1996, i.e., N = 17 520.

The plot of this series, see Fig. 3, shows that this series displays intermittency, and two significant
changes in variance: we use a Gaussian penalized contrast function, and estimate the number of
intervals with an adaptive method; see Lavielle and Ludeña [37], Lavielle and Teyssière [39,40]
for further details on this method.

Table 9
V/S, IR and score r̂ statistics for the series of squared returns

Series V/S IR r̂ ,�t ∼ AR(k)

q V/S P-values m IR P-values k r̂ P-values

BoA 10 0.4662 0.0002 10 0.6433 0.0121 0 6.8593 3.4585e-12
20 0.3524 0.0019 20 0.6291 0.1229 1 6.5906 2.1905e-11
30 0.2919 0.0063 30 0.6059 0.3441 3 4.5082 3.2685e-06
[N1/2] 0.3051 0.0048 [N1/2] 0.6029 0.3612 5 5.5868 1.1564e-08
[N1/3] 0.4830 0.0001 [N1/3] 0.6525 0.0027

Oracle 10 0.2931 0.0061 10 0.6251 0.0652 0 4.7063 1.2614e-06
20 0.2327 0.0202 20 0.6843 0.0033 1 5.5311 1.5909e-08
30 0.1979 0.0402 30 0.6270 0.1895 3 3.9880 3.3320e-05
[N1/2] 0.2072 0.0335 [N1/2] 0.6308 0.1527 5 3.8839 5.1391e-05
[N1/3] 0.3008 0.0053 [N1/3] 0.6027 0.2639

SAP 10 0.2842 0.0073 10 0.5957 0.3774 0 4.8614 5.269e-07
20 0.2302 0.0212 20 0.6517 0.0350 1 6.7675 6.549e-12
30 0.2007 0.0380 30 0.5863 0.5163 3 3.5581 0.0002
[N1/2] 0.2058 0.0344 [N1/2] 0.5866 0.5142 5 2.7533 0.0029
[N1/3] 0.2927 0.0062 [N1/3] 0.6228 0.0660
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Fig. 3. The series of returns on US dollar/British pound FX rate with the two estimated change-points in variance (using
the adaptive method) at times t = 2394 and 16 164 represented by the two vertical dark lines.

Table 10
V/S, IR and score r̂ statistics for the series of squared returns on 30-min spaced GBP-USD FX rate

V/S IR r̂ ,�t ∼ AR(k)

q V/S P-values m IR P-values k r̂ P-values

[N1/3] 1.2072 8.9425e-11 [N1/3] 0.6100 0.0030 0 50.3717 0.0000
40 1.0868 9.6421e-10 40 0.5918 0.3540 1 6.9013 2.5765e-12
60 0.9798 7.9703e-09 60 0.6127 0.0222 3 9.6007 3.9711e-22
80 0.8898 4.7048e-08 80 0.6179 0.0175 5 8.7394 1.1716e-18
100 0.8148 2.0709e-07 100 0.6106 0.0778
[N1/2] 0.7232 1.2618e-06 [N1/2] 0.5992 0.2721

We estimate both statistics on the whole sample, for a grid of bandwidths between [N1/3] and
[N1/2], i.e., 26, 40, 60, 80, 100, 132, see Table 10. While the V/S statistic detects long-range
dependence in the series of squared returns, with very low P-values, the IR statistic yields mixed
results, as for m = 40, 100, 132 the null hypothesis of no long-range dependence is accepted. For
all values of the bandwidth parameters, the P-values of the IR statistic are far greater than the ones
of theV/S statistic. We obtain here a more nuanced view on the presence of long-range dependence
in volatility: there might be long-memory in squared returns, but with a lower intensity than the
one that can be inferred from the results of the V/S statistic. This result is consistent with the
wavelet analysis of long-range dependence by Teyssière and Abry [59], who observed that long-
range dependence is present in this series of squared returns, but with a far lower intensity, i.e.,
d̂W = 0.0491, than the one obtained with the local Whittle and local log-periodogram spectral
estimators.

The score test r̂ rejects always the null hypothesis of long-range dependence, which is not
surprising since this test is not robust to the presence of changes in the unconditional variance of
the process.

The CUSUM test by Berkes et al. [7] detects a change point for q = 5, and does not reject the
null hypothesis of weak dependence, for q = 10, 15, and q = [15 log10 N ] = 63.
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5. Proofs

Proof of Proposition 2.1. (i) Let Sn :=∑n
t=1(Xt − Am), n = 1, 2, . . . , then

∑m+j
t=j+1(Xt+m −

Xt) = �2S[mT ], where T = j/m and �2 is the second difference operator defined in Section 1.
Relation (2.2) can be rewritten as

G−1
m

(
S[m(T1+�1)] − S[mT1], S[m(T2+�2)] − S[mT2]

)
→FDD G(d)

(
B1

d+.5(�1), B
2
d+.5(�2)

)
(5.1)

as m, T1, T2 − T1 → ∞. In particular, (5.1) implies

G−1
m

m+j∑
t=j+1

(Xt+m − Xt) = G−1
m �2S[mT ] (T = j/m)

= G−1
m (S[m(T +2)] − S[mT ]) − 2D−1

m (S[m(T +1)] − S[mT ])
→ D G(d) (Bd+.5(2) − 2Bd+.5(1)) = G(d)�2Bd+.5(0)

as m → ∞, j/m = T → ∞. In a similar way,

G−1
m

⎛⎝ m+j∑
t=j+1

(Xt+m − Xt),

2m+j∑
t=j+m+1

(Xt+m − Xt)

⎞⎠
= G−1

m

(
�2S[mT ], �2S[m(T +1)]

)
→D G(d)

(
�2Bd+.5(0), �2Bd+.5(1)

)
. (5.2)

Therefore, as m → ∞, j/m → ∞, so


m(j) :=
∣∣∣G−1

m

∑j+m
t=j+1(Xt+m − Xt) + G−1

m

∑j+2m
t=j+m+1(Xt+m − Xt)

∣∣∣∣∣∣G−1
m

∑j+m
t=j+1(Xt+m − Xt)

∣∣∣+ ∣∣∣G−1
m

∑j+2m
t=j+m+1(Xt+m − Xt)

∣∣∣
→ D

∣∣�2Bd+.5(0) + �2Bd+.5(1)
∣∣∣∣�2Bd+.5(0)

∣∣+ ∣∣�2Bd+.5(1)
∣∣ (5.3)

and hence

E
m(j) → �(d) (m → ∞, j/m → ∞), (5.4)

by definition of �(d) in (1.3). Relation (2.5) now easily follows by the dominated convergence
theorem, as 0�E
m(j)�1 and

IR = 1

N − 3m

N−3m−1∑
j=0


m(j). (5.5)

Consider (2.6). With (2.5) in mind, it suffices to show

var(IR) → 0. (5.6)
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We have by (5.5)

var(IR) = 1

(N − 3m)2

N−3m−1∑
j1,j2=0

cov
(

j1

, 
j2

)
. (5.7)

It suffices to show that

E
m(j1)
m(j2) → �(d)2, E
m(j1)E
m(j2) → �(d)2, (5.8)

as m, j1/m, (j2 − j1)/m → ∞. Clearly, the second relation in (5.8) follows from (5.4). Next, by
Assumption (A1),

G−1
m

⎛⎝ m+j1∑
t=j1+1

(Xt+m − Xt),

2m+j1∑
t=j1+m+1

(Xt+m − Xt),

m+j2∑
t=j2+1

(Xt+m − Xt),

2m+j2∑
t=j2+m+1

(Xt+m − Xt)

⎞⎠
= G−1

m

(
�2S[mT1], �2S[m(T1+1)], �2S[mT2], �2S[m(T2+1)]

)
→D G(d)

(
�2B1

d+.5(0), �2B1
d+.5(1), �2B2

d+.5(0), �2B2
d+.5(1)

)
. (5.9)

as m → ∞, j1/m = T1 → ∞, j2/m = T2 → ∞, (j2 − j1)/m = T2 − T1 → ∞. Whence and
from the definition of 
m(j) the first relation in (5.8) easily follows. This proves (5.6) and part
(i).

(ii) The proof is similar to that of part (i).Write (mGm)−1∑j+m
t=j+1(Xt+m−Xt)=

∫ 1
0 hm,T (�) d�,

where T := (j + 1)/m,

hm,T (�) := G−1
m (X[m(�+1+T )] − X[mT ]) − G−1

m (X[m(�+T )] − X[mT ]).

By Assumption (A2),

hm,T (�) →FDD G(d)(Bd−.5(� + 1) − Bd−.5(�)) (5.10)

as m, (j + 1)/m = T → ∞. It is easy to check that the sequence of random processes
{hm,T (�), � ∈ [0, 1]} satisfies the weak convergence criterion in L1[0, 1] due to Cremers and
Kadelka [15]. Indeed, from (2.4), for any � ∈ [0, 1]

E|hm,T (�)|�(Eh2
m,T (�))1/2 = G−1

m

(
E(X[m�]+m+j+1 − X[m�]+j+1)

2
)1/2

�C
1/2
2

which also implies E|hm,T (�)| → |G(d)|E|Bd−.5(�+1)−Bd−.5(�)| and therefore the convergence
in (5.10) extends to the weak convergence in L1[0, 1] so that

(mGm)−1
j+m∑

t=j+1

(Xt+m − Xt) →D G(d)

∫ 1

0
�Bd−.5(�) d�

as m, (j + 1)/m = T → ∞. In a similar way, from Assumption (A2) we obtain

(mGm)−1

⎛⎝ m+j1∑
t=j1+1

(Xt+m − Xt),

2m+j1∑
t=j1+m+1

(Xt+m − Xt),
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m+j2∑
t=j2+1

(Xt+m − Xt),

2m+j2∑
t=j2+m+1

(Xt+m − Xt)

⎞⎠
→D G(d)

(∫ 1

0
�B1

d−.5(�) d�,
∫ 1

0
�B1

d−.5(� + 1)d�,
∫ 1

0
�B2

d−.5(�) d�,∫ 1

0
�B2

d−.5(� + 1) d�

)
,

as m → ∞, j1/m = T1 → ∞, j2/m = T2 → ∞, (j2 − j1)/m = T2 −T1 → ∞. The remaining
details are similar as in the proof of (i). Proposition 2.1 is proved. �

Proof of Proposition 2.2. Follows by standard Fourier series argument and is omitted. �

Proof of Proposition 2.3. Let first −.5 < d < .5. Write

[m(T +�)]∑
t=1+[mT ]

Xt =
[m(T +�)]∑
t=1+[mT ]

X0
t + Sm,T (�),

where X0
t :=∑t

s=−∞ �(t − s)�s is a stationary FARIMA(0, d, 0) process, and

Sm,T (�) :=
0∑

s=−∞

[m(T +�)]∑
t=1+[mT ]

�(t − s)�s ,

Therefore relation (2.2) for Xt follows from the fact that this relation holds for the stationary
FARIMA(0, d, 0) process X0

t , under the normalization Gm = m−d−.5, see Bružaitė and Vaičiulis
[12], and

m−2d−1ES2
m,T (�) → 0 (m → ∞, T → ∞). (5.11)

But

ES2
m,T (�) =

∞∑
s=0

⎛⎝ [m(T +�)]∑
t=1+[mT ]

�(t + s)

⎞⎠2

�C

∫ ∞

0

(∫ m(T +�)

mT

(t + s)d−1 dt

)2

ds

= Cm2d+1
∫ ∞

0

(∫ T +�

T

(t + s)d−1 dt

)2

ds = o(m2d+1).

Next, let .5 < d < 1.5, d �= 1. Let

Y 0
t :=

t∑
s=−∞

��(t − s)�s , ��(t) := �(t) − �(t − 1)(t �1), ��(0) := 1. (5.12)

Note ��(j) ∼ jd−2/�(d − 1)(j → ∞) and so
∑∞

j=0 (��(j))2 < ∞(1 < d < 1.5),∑∞
j=0 |��(j)| < ∞,

∑∞
j=0 �(j) = 0(.5 < d < 1). Therefore Y 0

t in (5.12) is well-defined, as a
stationary moving average process, and satisfies Assumption (A.1) with d replaced by d − 1 ∈
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(−.5, .5), see Bružaitė and Vaičiulis [12]. We have

X[m(T +�)] − X[mT ] =
[m(T +�)]∑
t=[mT ]+1

Y 0
t + Um,T (�),

where

Um,T (�) :=
0∑

s=−∞

[m(T +�)]∑
t=1+[mT ]

��(t − s)�s

satisfies m−2(d−1)−1EU2
m,T (�) → 0 (m → ∞, T → ∞) (the proof of the last relation is analo-

gous to (5.11)). We have proved that Xt satisfies Assumption (A.2). The statement of Proposition
2.3 in the case d = 1 is obvious, as Xt reduces to a sum of iid rv’s. Proposition 2.3 is proved. �

Proof of Theorem 2.4. As explained in Section 2, the theorem follows from the inequality (2.19)
and the asymptotics (2.20)–(2.23).

Proof of (2.20)–(2.23). Without loss of generality, assume c0 = 1. We shall separately consider
the cases (i) (−.5 < d < .5) and (ii) (.5 < d < 1.5).

Case (i): Let r(t) = ∫ �
−� eitxf (x) dx be the covariance of Xt . Then

V 2
m = 2

m∑
t,s=1

r(t − s) − 2
m∑

t,s=1

r(t − s + m) = 4
∫ �

−�
f (x)

sin4(mx/2)

sin2(x/2)
dx, (5.13)

and, similarly,

Rm = 4
∫ �

−�
f (x) cos(mx)

sin4(mx/2)

sin2(x/2)
dx. (5.14)

Consider the integral

J (a, m) :=
∫ �

0
xa sin4(mx/2)

sin2(x/2)
dx = 4m1−a

∫ ∞

0
xa−2 sin4(x/2)gm(x) dx,

where −1 < a < 1 and

gm(x) :=
⎧⎨⎩

(x/2m)2

sin2(x/2m)
, 0 < x < m�,

0, x > m�.

Note for each x > 0, gm(x) → 1(m → ∞). Next,
∫∞

0 xa−2 sin4(x/2)|gm(x) − 1|dx�I1 + I2,
where

I1 :=
∫ ∞

m�
xa−2 dx, I2 :=

∫ m�

0
xa−2 sin4(x/2)

(x/2m)2 − sin2(x/2m)

sin2(x/2m)
dx

Here, I1 �Cma−1. Using the bounds: sin(x)�c1x and |x2 − sin2(x)|�c2x
4(0 < x < �/2),

where c1, c2 > 0 are some constants, we obtain

I2 �C

∫ m�

0
xa−2 min(x4, 1)(x/m)2 dx�Cma−1.
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Note also I (a) := ∫∞
0 xa−2 sin4(x/2) dx < ∞. We thus obtain that for a ∈ (−1, 1),

J (a, m) = 4I (a)m1−a + O(1) (m → ∞). (5.15)

Applying (5.15) with a = −2d ∈ (−1, 1) and a = −2d + 	 ∈ (−1, 1) (as 0 < 	 < 2d + 1) we
obtain relation (2.20), with V (d) = 4

∫∞
0 x−2d−2 sin4(x/2) dx. In a similar way, (2.21) follows

with R(d) = 4
∫∞

0 x−2d−2 cos(x) sin4(x/2) dx. To explicitly obtain the above integrals, use (2.8)
and the identities

∫∞
0 x−2d−2 sin2(x/2) dx = K(d + .5)/8 (see [56, (9.8)]) and sin4(x/2) =

− 1
4 sin2(x) + sin2(x/2), cos(x) sin4(x/2) = 1

8

(− sin2(3x/2) + 4 sin2(x) − 7 sin2(x/2)
)
.

Case (ii): follows similarly to (i), by writing Vm, Rm in terms of the spectral density f (x) of
Ut = Xt − Xt−1:

V 2
m =

∫ �

−�

sin4(mx/2)

sin4(x/2)
f (x) dx, (5.16)

Rm =
∫ �

−�
cos(mx)

sin4(mx/2)

sin4(x/2)
f (x) dx, (5.17)

c.f. (5.13), (5.14). The remaining details are similar to those of part (i) and are omitted.
Proof of (2.19). Let �m := EY 0Y 1, � := EZ0Z1 = �(d). Let �0, �1 be mutually independent

standard N (0, 1) random variables. Then

(Y 0, Y 1) =D (�0, �m�0 + (1 − �2
m)1/2�1),

(Z0, Z1) =D (�0, ��0 + (1 − �2)1/2�1), (5.18)

in the sense of equality of distributions. By (2.17),

EIR − �(d) = E

[ |�0 + (�m�0 + (1 − �2
m)1/2�1)|

|�0| + |�m�0 + (1 − �2
m)1/2�1| − |�0 + (��0 + (1 − �2)1/2�1)|

|�0| + |��0 + (1 − �2)1/2�1|
]

=
∫ �m

�
E

[
��(r; �0, �1)

�r

]
dr, (5.19)

where �(r; x0, x1) := (|x0 + (rx0 + (1 − r2)1/2x1))/(|x0| + |rx0 + (1 − r2)1/2x1|). It is easy to
check that |��(r; x0, x1)/�r|�C/(1−r2) is bounded uniformly in x0, x1 provided r2 is separated
from 1: 1 − r2 > C1 > 0. Then (2.19) is immediate from (5.19). Theorem 2.4 is proved. �

Proof of Theorem 2.5. (i) Recall the definitions of Yj (m) in (2.28) and Zd(�) in (1.5). We start
with the relation

Ym([m�]) →FDD Zd(�), (5.20)

which holds in view of Gaussianity of Xt and the assumptions on the spectral density f (x). Next,

(N/m)var(IR) = N

N − 3m

∑
|j |<N−3m

m−1cov
(

m(0), 
m(j)

) (
1 − |j |

N − 3m

)
. (5.21)

Using the convergence (5.20), one can easily show that as m → ∞ and j/m → � ∈ R, so

cov
(

m(0), 
m(j)

)→ cov

( |Zd(0) + Zd(1)|
|Zd(0)| + |Zd(1)| ,

|Zd(�) + Zd(� + 1)|
|Zd(�)| + |Zd(� + 1)|

)
. (5.22)
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From Lemma 5.1, (5.35) and Arcones [4, Lemma 1] it follows that there exists a constant C > 0
such that for any m, j �1∣∣cov

(

m(0), 
m(j)

)∣∣ �C(j/m)−2. (5.23)

Then (2.25) follows from (5.21), (5.22), the dominated convergence theorem and (5.23).
The proof of (2.26) follows the usual scheme of the proof of CLT’s for sums of subordinated

Gaussian functionals using Hermite expansion and the diagram formula; see e.g., Breuer and
Major [10], Giraitis and Surgailis [27], Chambers and Slud [13], Arcones [4]. (However, these
results do not directly apply to our situation since Ym(j), 0�j < N − 3m form a triangular
array.) Therefore, we present an outline of the proof of the CLT (Steps 1–3 below).

Step 1: Hermite expansion. Let

�0m(j) := Ym(j), �1m(j) := (1 − �2
m)−1/2(Ym(j + m) − �mYm(j)). (5.24)

Then for each j, m, �0m(j), �1m(j) are independent and have a standard Gaussian distribution;
moreover, Ym(j) = �0m(j), Ym(j + m) = �m�0m(j) + (1 − �2

m)1/2�1m(j); see (5.18). Let

gm(x0, x1) := |x0 + �mx0 + (1 − �2
m)1/2x1|

|x0| + |�mx0 + (1 − �2
m)1/2x1| . (5.25)

Then 
m(j) = gm (�0m(j), �1m(j)) is a nonlinear function (bounded by 1) in standardized Gaus-
sian variables of (5.24). One can write the Hermite expansion:


m(j) = E
m(j) +
∑

k0,k1 �0:k0+k1 �2

c
(m)
k0,k1

k0!k1!Hek0 (�0m(j)) Hek1 (�1m(j)) , (5.26)

convergent in mean square, where

c
(m)
k0,k1

:= E
[
gm(�0, �1)Hek0(�0)Hek1(�1)

]
, (5.27)

where �0, �1 ∼ N (0, 1) are uncorrelated, and where Hek(x) = (−1)kex2/2(e−x2/2)(k), k =
0, 1, . . . are Hermite polynomials. Note E
m(j) = Egm (�0m(j), �1m(j)) = c

(m)
0,0 and c

(m)
1,0 =

E[�0gm(�0, �1)] = 0, c
(m)
0,1 = E[�1gm(�0, �1)] = 0 which follows by symmetry of gm in (5.25).

Step 2: approximation by finite sum of Hermite polynomials. Let K �1 be a sufficiently large
integer. From (5.26) we can write

IR − EIR = SK + S̃K, (5.28)

where SK := (N − 3m)−1∑N−3m−1
j=0 
m,K(j), S̃K := (N − 3m)−1∑N−3m−1

j=0 
̃m,K(j), and
where


m,K(j) :=
∑

2�k0+k1 �K

c
(m)
k0,k1

k0!k1!Hek0(�0m(j))Hek1(�1m(j)), (5.29)


̃m,K(j) :=
∑

k0+k1>K

c
(m)
k0,k1

k0!k1!Hek0(�0m(j))Hek1(�1m(j)). (5.30)

Similarly to (5.23) we obtain
∣∣cov

(̃

m,K(0), 
̃m,K(j)

)∣∣ ��(K)(j/m)−2, where �(K) does not
depend on m, j �1, and vanishes as K → ∞. As a consequence, the second term on the r.h.s. in
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(5.28) is negligible, and it suffices to prove the CLT for the (truncated) term SK only, namely,

(N/m)1/2SK →D N (0, �2
K), (5.31)

as N, m, N/m → ∞, where limK→∞ �2
K = �2(d) (the proof of the last fact is similar to (2.25)

above).
Step 3: Proof of (5.31). Similarly to (2.25), one can show (N/m)ES2

K → �2
K(N, m, N/m →

∞). Therefore the proof of (5.31) reduces to asymptotic normality of sums of (bivariate) Hermite
polynomials in (5.29). In other words, it suffices to show that for any p�3 and all sufficiently
large N, m�1

cum(S(q01, q11), . . . , S(q0p, q1p)) = o
(
(N/m)−p/2

)
, (5.32)

where cum(·, · · · , ·) stands for joint cumulant,

S(k0, k1) := 1

N − 3m

N−3m−1∑
j=0

Hek0(�0m(j))Hek1(�1m(j)),

and where qij �0 (i = 0, 1, j = 1, . . . , p) are arbitrary integers such that q01+q11 �2, . . . , q0p+
q1p �2. By the diagram formula, see e.g., Arcones [4], Giraitis and Surgailis [28], the cumulant
in (5.32) can be written as a sum of contributions J (�) corresponding to all connected diagrams
� of the table

T =

⎛⎜⎜⎝
(1, 1) (1, 2) . . . (1, q01 + q11)

(2, 1) (2, 2) . . . (2, q02 + q12)

. . .

(p, 1) (p, 2) . . . (p, q0p + q1p)

⎞⎟⎟⎠ , (5.33)

and (5.32) follows from J (�) = o
(
(N/m)−p/2

)
, for any given connected diagram �. The last

relation can be proved using the bound in Lemma 5.1(i) and the (generalized) Hölder inequality
in Giraitis and Surgailis [25, (2.13)] (see also [54, Proposition 3.1]). This concludes the proof of
(5.31) and part (i) of Theorem 2.5, too.

(ii) is very similar to that of (i). Consider the representation (2.29), with Yj defined as in (2.28).
From the assumptions on Xt and spectral density f (x) of Ut , it easy to verify the relation (5.20).
Then (2.25) follows from (5.22) as in part (i), and from the bound∣∣cov

(

m(0), 
m(j)

)∣∣ �C|j/m|−2 min(1,3−2d), (5.34)

as 2 min(1, 3−2d) > 1 for .5 < d < 1.25. The proof of (5.34) is exactly similar to that of (5.23),
with the difference that Lemma 5.1(i) must be replaced by Lemma 5.1(ii). Theorem 2.5 is proved.

�

Lemma 5.1. (i) Let the assumptions of Theorem 2.5(i) be satisfied. Then there exists a constant
C > 0 such that for any integers m, j �1

|cov (Ym(0), Ym(j))| �C(j/m)−1. (5.35)
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(ii) Let the assumptions of Theorem 2.5(ii) be satisfied. Then there exists a constant C > 0 such
that for any integers m, j �1

|cov (Ym(0), Ym(j))| �C

⎧⎨⎩
(j/m)−1, .5 < d < 1,

(j/m)−1(1 + log(1 + (j/m))), d = 1,

(j/m)3−2d , 1 < d < 1.5.

(5.36)

Proof. (i) Let �m(j) = cov(Ym(0), Ym(j)). Similarly as in (5.13)–(5.14),

�m(j) = V −2
m

m∑
t,s=1

(2r(j + t − s) − r(j + m + t − s) − r(j − m + t − s))

= 4V −2
m

∫ �

−�
f (x) cos(jx)

sin4(mx/2)

sin2(x/2)
dx

= −8V −2
m j−1

∫ �

0
sin(jx)F ′

m(x) dx,

where Fm(x) := f (x) sin4(mx/2)/ sin2(x/2). Hence using V 2
m ∼ const.m2d+1 we obtain

|�m(j)|�Cm−2d−1j−1
∫ �

0
|F ′

m(x)| dx. (5.37)

Note F ′
m(x) → 0(x → 0) by condition (2.12) and∣∣∣∣∣
(

sin4(mx/2)

sin2(x/2)

)′∣∣∣∣∣ �C

{
m4x, 0 < x < 1/m,

mx−2, x > 1/m.
(5.38)

From (2.12) and (5.38) we obtain∫ 1/m

0
|F ′

m(x)| dx�C

∫ 1/m

0

(
x−2dm4x + x−2dm2

)
dx = Cm2d+2,∫ �

1/m

|F ′
m(x)| dx�C

∫ �

1/m

(
x−2dmx−2 + x−2d−1x−2

)
dx�Cm2d+2,

implying (5.35) by (5.37).
(ii) As EY 2

m(j) = 1, it suffices to prove the statement for j �m. Furthermore, for simplicity we
shall assume that j is an even integer, j �2. Similarly as in (5.13)–(5.14),

�m(j) = V −2
m E

⎛⎝ m∑
t=1

∑
t<s � t+m

Us

⎞⎠⎛⎝ j+m∑
t ′=j+1

∑
t ′<s′ � t ′+m

Us′

⎞⎠
= 2V −2

m

∫ �

0
f (x) cos(jx)

sin4(mx/2)

sin4(x/2)
dx =: 2V −2

m I. (5.39)

Write I = ∫ 2�/j

0 . . . + ∫ �
2�/j

. . . =: I1 + I2. Here,

I2 = j−1
∫ �j

2�
cos(y)f (y/j)

sin4(my/2j)

sin4(y/2j)
dy = j−1

j/2−1∑
q=1

I2(q),

where

I2(q) :=
∫ 2�q+�

2�q

cos(y)

(
f

(
y

j

)
sin4(my/2j)

sin4(y/2j)
− f

(
y + �

j

)
sin4(m(y + �)/2j)

sin4((y + �)/2j)

)
dy
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=
∫ 2�q+�

2�q

cos(y)

(
F̃m

(
y

j

)
− F̃m

(
y + �

j

))
dy,

where F̃m(x) := f (x) sin4(mx/2)/ sin4(x/2). Using condition (2.27) and the bound∣∣∣∣∣
(

sin4(mx/2)

sin4(x/2)

)′∣∣∣∣∣ �C

{
m6x, 0 < x < 1/m,

x−5, 1/m < x < �,

we obtain

|F̃ ′
m(x)| � |f ′(x)|

(
sin4(mx/2)

sin4(x/2)

)
+ |f (x)|

∣∣∣∣∣
(

sin4(mx/2)

sin4(x/2)

)′∣∣∣∣∣
� C

{
x1−2dm4 + x2−2dm6x = m4x1−2d if 0 < x < 1/m,

x1−2dx−4 + x2−2dx−5 = x−3−2d if 1/m < x < �.
(5.40)

Then for 1�q �j/m, using the first bound in (5.40), we obtain

|I2(q)|�C|F̃ ′
m(2�q/j)|j−1 �Cm4j2d−2q1−2d ,

and

j−1
j/m∑
q=1

|I2(q)| � Cm4j2d−3
j/m∑
q=1

q1−2d

� Cm2d+1

⎧⎨⎩
(j/m)−1, .5 < d < 1,

(j/m)(1 + log(j/m)), d = 1,

(j/m)2d−3, 1 < d < 1.5.

On the other hand, for j/m�q �j , using the second bound in (5.40), we obtain

|I2(q)|�C|F̃ ′
m(2�q/j)|j−1 �Cq−2d−3j2+2d ,

and

j−1
∑

q � j/m

|I2(q)|�Cj2d+1
∑

q � j/m

q−3−2d �Cm2d+1(j/m)−1.

Consequently,

|I2|�Cm2d+1

⎧⎨⎩
(j/m)−1, .5 < d < 1,

(j/m)−1 (1 + log(1 + (j/m))) , d = 1,

(j/m)2d−3, 1 < d < 3
2 .

(5.41)

Finally, using (2.14),

|I1|�Cm4
∫ 2�/j

0
f (x) dx�Cm4j2d−3 = Cm2d+1(j/m)2d−3. (5.42)

The statement of the lemma follows from (5.41), (5.42) and V 2
m ∼ c0V (d)m2d+1 (see (2.20)).

�
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6. Properties of the second increment of fBm

In this section, we discuss some properties of the process Zd(�), � ∈ R (the second increment
of fBm) defined in (1.5).

Proposition 6.1. The processes Zd(�), � ∈ R in (1.5) is well-defined and stationary Gaussian
process, for any −.5 < d < 1.5, d �= .5. It has zero mean, unit variance EZ2

d(�) = 1 and the
covariance given in (1.6); more explicitly,

EZd(0)Zd(�) = 1

2(4 − 4d+.5)

(
−|� + 2|2d+1 + 4|� + 1|2d+1 − 6|�|2d+1

+4|� − 1|2d+1 − |� − 2|2d+1
)

, (6.1)

The process Zd(�) admits the stochastic integral representation

Zd(�) = C(d + .5)

∫
R

�2
�(� − x)d+M(dx), (6.2)

where M(dx) is a standard Gaussian white noise with zero mean and variance dx, and where
C(H) := √�(2H + 1)| sin(�H)|/�(H + .5)2|4 − 4H |.

Proof. Eq. (6.1) follows from (1.5), (2.1) and elementary integration; Eq. (6.2) is immediate from
(1.5) and the stochastic integral representation of fBm given in Taqqu [56]. (One can easily check
that the integrand in (6.2) belongs to L2(R) so that the stochastic integral is well-defined.) �

Remark 6.1. (i) For d = .5, the process Z.5(�), � ∈ R can be defined by continuity, as a stationary
Gaussian process with zero mean and the covariance

EZ.5(0)Z.5(�) = 1

16 log 2

(
(� + 2)2 log(� + 2)2 − 4(� + 1)2 log(� + 1)2 + 6�2 log �2

−4(� − 1)2 log(� − 1)2 + (� − 2)2 log(� − 2)2
)

= − 1

16 log 2
�2

s�
2
t (t − s)2 log(t − s)2

∣∣∣∣
t−s=�

. (6.3)

(ii) From Taylor expansion of (6.1),

EZd(0)Zd(�) ∼ (2d + 1)(2d)(2d − 1)(2d − 2)

2(4d+.5 − 4)
�2d−3 (� → ∞). (6.4)

The asymptotic relation (6.4) holds for all −.5 < d < 1.5, d �= 0, .5, 1. Note the asymptotic
constant vanishes for d = 0 and d = 1. When d = 0 or d = 1, the autocovariance function is a
piecewise polynomial, in particular,

EZ1(0)Z1(�) = 2−3

⎧⎨⎩
6�3 − 12�2 + 8, 0���1,

−2�3 + 12�2 − 24� + 16, 1���2,

0, ��2.

Proposition 6.2. The function �(d) in (1.3) satisfies �(d) = �0(�(d)), where �(d), �0(r) are
given in (1.4), (1.7), respectively. The function �(d) is strictly increasing on the interval (−.5, 1.5)
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and �(1.5) = 1. In particular,

�(0) = �0(−.5) = 2

�
arctan

√
1

3
+ 1

�

√
1

3
log 4 = .588101 . . . ,

�(1) = �0(.25) = 2

�
arctan

√
5

3
+ 1

�

√
5

3
log

(
8

5

)
= .773572 . . . .

Proof. From the definition and the change of variables x1 = a cos �, x2 = a sin �,

�0(r) = 1

2�
√

1 − r2

∫
R2

|x1 + x2|
|x1| + |x2|e

− 1
2(1−r2)

(
x2

1−2rx1x2+x2
2

)
dx1 dx2

= 2
√

1 − r2

�

∫ �/4

0

(
1

1 − r sin(2�)
+ cos � − sin �

cos � + sin �

1

1 + r sin(2�)

)
d�

= 2

�
arctan

(√
1 + r

1 − r

)
+

√
1 − r2

�(1 − r)

(
log 2 − log(1 + r)

)
,

proving (1.7). The strict monotonicity of �(d) follows from the monotonicity of �(d), d ∈
(−.5, 1.5) and �0(r), r ∈ (−1, 1), which follows from

�′
0(r) = 1

�
√

(1 + r)(1 − r)3
log

(
2

1 + r

)
> 0 (−1 < r < 1).

Proposition 6.2 is proved. �
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