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Abstract

We estimate here several trivariate FIGARCH models on three series of intra-day
FX rates returns: USD/DEM, USD/GBP, and USD/JPY. We consider the trivari-
ate constant conditional correlation CCC-FIGARCH, the unrestricted trivariate FI-
GARCH, and a trivariate double long-memory model combining an ARFIMA regres-
sion function with an unrestricted trivariate FIGARCH skedastic function. Estimation
results show that: (¢) the three series are anti-persistent and share a common degree
of short-range dependence, (i7) the series USD/DEM and USD/JPY have the same re-
gression function, (7i7) the three series share the same degree of long-memory in their
conditional variance, (iv) the conditional covariances Cov;(USD/DEM, USD/JPY)
and Cov,(USD/DEM,USD/GBP) have a common degree of persistence, although this
degree is different from the degree of long-memory of the conditional variances, (v)
the unrestricted FIGARCH model dominates the CCC-FIGARCH model, although
(vi) the seasonality in the volatility of these series cannot be captured by FIGARCH
models.
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1 Introduction

The statistical classes of long-memory stochastic variance processes are now extensively
used for the modeling of daily speculative returns, as their theoretical properties, estab-
lished by Robinson and Zaffaroni (1997), Ding and Granger (1996), Harvey (1993) and
Breidt, Crato and de Lima (1998), match the empirical properties of these returns: they
are serially uncorrelated, but their absolute value and squares exhibit long-range depen-
dence, and their conditional variance is predictable.

We consider here the class of long-memory ARCH processes, which extends the class of
ARCH/GARCH models (Engle, 1982, Bollerslev, 1986) to fractional situations. This class
has been introduced in Robinson (1991), and developed from different points of view by
Ding and Granger (1995, 1996), Baillie, Bollerslev, and Mikkelsen (1996), Bollerslev and
Mikkelsen (1996), McCurdy and Michaud (1996), Teyssiere (1998a).

In a previous work (Teyssiére, 1997a), we have considered the class of long-memory
ARCH processes in a multivariate framework, by modeling all the conditional second mo-
ments. This extension was motivated by the similarity of the estimated long-memory
component for several series. This common long-range component in the volatility, also
observed by Ray and Tsay (1997), and Henry and Payne (1997), suggests an extension to
a multivariate model in which the hypothesis of a common persistent component can be
tested by using the standard likelihood ratio (LR) test. A common long-range component
in a set of conditional covariances is of interest for long-term forecasts since the relative
variations between these covariances are only transitory. This concept of co-persistence
developed by Bollerslev and Engle (1993) for the class of Integrated ARCH processes,
which resembles to the idea of cointegration/fractional cointegration for conditional mean
processes, is still lacking of connection with theoretical models.(See Pagan, 1996)

The most simple multivariate long-memory ARCH model is the long-memory exten-
sion of the multivariate constant conditional correlation GARCH model (CCC-GARCH),
proposed by Bollerslev (1990). The CCC-GARCH model assumes that the conditional
covariances are proportional to the product of the corresponding conditional standard de-
viations, and are characterized by a single parameter, the constant conditional correlation.
This parsimonious model is of interest for high-dimensional multivariate processes. How-
ever, this assumption is very restrictive, as the multivariate CCC long-memory ARCH
model amounts to a juxtaposition of univariate long-memory ARCH models. The interest
of a multivariate model comes from the possibility of explicitly modeling the conditional
covariances between the time series. This point is important in this new research area as
there is no theoretical model explaining long-memory in the conditional second moments.
We can mention some explanations such as the heterogeneous market hypothesis developed
by Miiller, Dacorogna, Davé, Pictet, Olsen and Ward (1993), or the combination of Clark’s
information arrival model and its numerous refinements, with Granger’s (1980) aggregation



model, as suggested by Henry and Payne (1997). An ongoing work with Kirman based on
his noise traders models appears promising.

Thus, we introduced the class of unrestricted long-memory ARCH process in which
we model the conditional covariances as long-memory ARCH processes. We applied this
new class to the bivariate modeling of two series of daily returns on foreign exchange (FX)
rates, the USD/DEM and USD/GBP FX rates, and we observed that the three elements
of the bivariate covariance matrix share the same long-memory component.

This empirical result motivated this present work. As Olsen & Associates released
a new dataset of financial data at intra-day frequency, we decided to apply this class of
models to the 25 series of intra-day FX rates returns, for improving our knowledge of the
phenomenon of long-memory in the conditional variance, and checking whether we observe
similar results on intra-day FX rates.

This paper is organized as follows. We present in section 2 the concepts of long-range
dependence. The class of multivariate long-memory ARCH models is introduced in section
3. The most interesting characteristics of the data are given in section 4, and the estimation
results are discussed in section 5. Section 6 concludes.

2 Long-range and short-range dependent time series

We can introduce the concept of long-range dependence of a time series, i.e., dependence
between very distant observations, by using the class of self-similar processes. A process
Y; is self-similar if its distribution and the distribution of the rescaled process ¢?Y,; with
stretching factor ¢ and time scale ct, are the same. The self-similarity parameter, also
called the Hurst exponent, parsimoniously summarizes the degree of persistence of the
series. Self-similar processes with stationary increments and finite second moments are
called long-memory processes. Long-memory processes can also be characterized by their
fractional degree of integration d, with d = H —1/2, which allows for a more precise measure
of the degree of persistence of a series than the two integer alternatives 0 and 1 of the
unit root literature. If d € (0,1/2), the autocorrelations of the process are not summable,
Y ore oo P(k) = 00, and the process has long-memory or is persistent. If d > 1/2, the process
is non-stationary, but is mean reverting if d < 1. If d € (—1/2,0), the autocorrelations sum
up to zero, and the process has short-range dependence, or is anti-persistent.! Short-range
dependence is rarely considered in the econometric literature, except when the series is
over-differenced, but we will see in section 4 that the series of intra-day FX rates returns
are anti-persistent.

The fractional degree of integration d can be estimated in several ways. Mandelbrot
(1975) advocates the use of the R/S statistic as it can be applied to long-tailed a-stable

!See Beran (1994) and Robinson (1994) for an exhaustive presentation of long-memory processes.



processes with a € (0,2). This is of interest for applied works in finance as most financial
time series are strongly leptokurtic. The semi-parametric estimators of d in the spectral
domain are based on the approximation of the spectrum f(A) of a long-memory process
near the zero frequency by f(\) = G|\|~2¢. Robinson (1995) established the asymptotic
properties of a spectral estimator for d € (—1/2,1/2) suggested by Kiinsch (1987) based
on the discrete version of Whittle approximate likelihood estimator, given by:

d = argmin { In 1 i I(_/\de) _ 2 % In(A;) (1)
d m )\j m =

j=1

where I(\) is the periodogram estimated in a neighborhood of the zero frequency, A; =
wj/n,j = 1,...,m < mn, converging slowly to zero as the sample size increases: the
bandwidth parameter tends to infinity with n but the ratio m/n tends to zero.

The parameter d can be estimated in the framework of a parametric model such as the
fractional Gaussian noise, or its ARFIMA extension which generalizes the ARIMA model
by replacing the difference operator by the d** fractional difference operator defined as:?

00 k
1+d
(1- L)d = E akLk, with ap =1, o = H (1 — %) (2)
k=0 Jj=1

The sequence of coefficients {ay}72, have an hyperbolic rate of decay as:

-1
i - ~(1+d)
U = T—g)" )

where I'(.) denotes the Gamma function. The ARFIMA processes, which are characterized
by slowly decaying autocorrelations, are of interest for introducing long-memory processes
in the conditional variance as most ARCH/GARCH type skedastic functions can have an
ARFIMA parameterization.

3 Multivariate long-memory conditional variance processes

A long-memory component can be included in the functional form of the conditional vari-
ance of a process. Define a conditional heteroskedasticity model as

ye = u(ye) + &1, € ~ 1id. N(0,07) (4)

>See Granger (1980), Hosking (1981).




where 1 (y;) denotes the regression function, the conditional variance o? depends on the
information set €; consisting of everything dated ¢ — 1 or earlier. Engle (1982) proposed
the ARCH(p) skedastic function:

07 = w+ a(L)e} (5)

where «(L) is a lag polynomial of order p. Robinson (1991) considered the general case
of dynamic conditional heteroskedasticity by resorting to long-memory infinite order lag
polynomials with rate of decay given by equation (3), and introduced the long-memory
ARCH model as:

o0
op =) aje;; (6)
j=1

Hence, past disturbances have a hyperbolically decaying effect on the conditional variance.
Several long-memory ARCH models have been proposed in the literature.> With the
notable exceptions of Granger and Ding (1995) and Ding and Granger (1996), all of them
are based on the ARMA representation of the class of ARCH/GARCH processes. This
representation allowed Engle and Bollerslev (1986) to model the observed persistence in
the conditional variance of financial returns by introducing the class of IGARCH processes,
which is the ARIMA parameterization of a GARCH process. Because the IGARCH process
implies an infinite persistence of the shocks on the conditional variance, which does not
match the observed slowly decaying persistence in the variance of financial time series data,
Baillie, Bollerslev and Mikkelsen (1996) logically considered the ARFIMA parameterization
and introduced the FIGARCH(p, d, q) process:

$(L)(1 — D) ef = w+ (1 - B(L)) (7)

where where §(L) and ¢(L) are lag polynomials of respectively finite order p and ¢, the
roots of 1 — B(L) and ¢(L) being outside the unit circle, and v, = £? — o7 is a martingale
difference. As this ARFIMA in €? has a strictly positive drift w, the series €7 is not
covariance stationary. The parameters of this model should satisfy some conditions for
insuring the conditional variance to be strictly positive.*

We extended the univariate long-memory ARCH models to a multivariate framework

because estimation results of univariate models have shown that some time series appear to

3See references in the introduction.
“The sufficient conditions for a FIGARCH(1,d, 1) are (Bollerslev and Mikkelsen, 1996)

w>0,8-9¢<¢<(2-9)/3,q(¢—(1—-9)/2)<B(¢p—B+4q)

The positivity conditions for higher order models are more complicate. These conditions restrict the
flexibility of the FIGARCH model and its extensions.



share a common degree of long-memory in their conditional variance. Define a multivariate
long-memory ARCH processes as:

Yo = pu(Ye) +ep, e ~ LidN(0, ) (8)

where p(Y:) denotes the vector regression function, €; is a n-dimensional vector of error
terms with conditional covariance matrix ;. The constant conditional correlation (CCC)
long-memory ARCH model assumes that 3; has as typical element s;;;, with

. b — L)%
Siit = 0'1'21',1: = %ﬂ:(l) + (1 - ( ¢i(f)gz(gL) L) ) 812,75, i=1,...,n

Sijt = PijOiit0iit, ] =1,...,m 1#£] 9)

where p;; € (—1,1) denotes the constant conditional correlation. This CCC restricted
model insures that the conditional variance is always positive definite, and that the model
is stationary if and only if all its main diagonal elements are stationary, i.e., if d; ; € [0, 1] Vi.

However, our previous works have shown that this restriction is too strong and that the
dynamic of the conditional covariances is more complex: the CCC model is dominated by
the unrestricted long-memory ARCH model in which we model the conditional covariances
as a long-memory process. We have proposed an unrestricted multivariate long-memory
ARCH model, in which the conditional covariance matrix 3¢, with typical element s;; ;, is
defined as:

L w (1= ¢ij(L))(1 = L)%
0t = T g <1 - 1~ 6,(D)

As there is no analytical set of conditions for insuring ¥; to be positive definite, we
implement numerically this constraint in the estimation procedure. The estimated param-
eters should also insure that the multivariate long-memory ARCH process is stationary,
i.e., the conditional covariance is a measurable function on the information set €; and
trace(X¢X{ ) should be finite almost surely. This condition holds if the moments are
bounded, i.e., E(trace(Z¢;Z{ )P) is finite for some p.> As our estimation results show that
the two first moments of trace(f]t f]tT ) for the unrestricted model are finite and bounded
by the corresponding moments of trace(243]) for the CCC model which is stationary, we
can consider that the estimated process is stationary.

The drawback of this rich parameterization is a lack or parsimony: the number of
parameters of the conditional covariance matrix of a n-dimensional FIGARCH(1,d,1) is
equal to 4n(n + 1)/2 which is large for n > 4. However, this model allows ones to test the

) Ei,téfj,t, ’L,j = 1,...,?1 (10)

®See Bollerslev, Engle and Nelson (1994).



restriction of equality of parameters across the components of the conditional covariance
matrix. Very interestingly, we have seen in this previous work on daily FX rates returns
that all the components of the conditional covariance matrix, i.e., the conditional variances
and the conditional covariances have the same long-memory component, i.e., d;; = d, Vi, j.

As we assume that the error terms are normally distributed, the log-likelihood function
of the multivariate long-memory ARCH model is:

T
Lo(¢) = —% In(2r) — %; (In ]Sl + &7 By e (11)

where ¢ and T respectively denote the set of parameters and the sample size. The ro-
bust estimators of the variances are given by the heteroskedastic consistent covariance
matrix T~ 'H 1) Z(E) H () where H(¢) and Z(C) respectively denote the Hessian and
the outer-product-of-the-gradient matrices evaluated at the Quasi Maximum Likelihood
(QML) estimates C.

4 The data

We use here the latest release of the Olsen & Associates High Frequency dataset, HFDF96.
This dataset contains 25 FX rates recorded every 30 minutes. A typical record consists
of the date, the time, the offset of the previous nearest datum, the bid and ask prices
associated with this previous nearest datum, the offset of the next nearest datum and the
bid and ask price associated with this datum. The offset of the previous nearest datum
is > 0, and is equal to zero if the quote is observed at the 30 minutes interval. If no
observation is available at a 30 minute interval 7, we approximate the exchange rate at
this point of time by taking a linear combination of the nearest previous and next quote,
the weights being proportional to the inverse of the offsets of the previous and next nearest
datum.® As the FX market is a 24 hours global market inactive only during the week-ends,
we discard the observations from Friday 10.30PM to Sunday 10.30PM, and the holidays,
e.g., New Year’s Day, leaving 12528 observations.
We consider here the logarithmic middle price z(t) defined by

x%nd + :E?Sk
2

bid

with  z} ask —

z(t) = In(ppig,t), 77" = In(pask,t)s (12)

where pyiqs and pgsk ¢ respectively denote the bid and ask price at time ¢. This variable
behaves symmetrically when the price is inverted. Next, we define the returns r(t) as:

r(t) = z(t) — z(t — At) (13)

5Such interpolation mechanism has been used by Andersen and Bollerslev (1996).



where At represents the time interval between two consecutive observations. In our case,
At = 30 minutes. As these returns are unit-less, they can be directly compared.

In a first step, we model a univariate LM-ARCH model on the 25 series of returns.
As three series, the USD/DEM, GBP/USD, and USD/JPY, appeared to share the same
degree of long memory in their conditional variance, we decided to model these series with
a trivariate FIGARCH process.” This common long-range property is not surprising as
Guillaume et al. (1997) reported that these FX rates are the most frequently quoted, and
are certainly affected by the same set of events.

Table 1: Semiparametric estimates of the degree of long-range dependence dy of the series
of returns, their absolute value and their squares, for several values of the bandwidth
parameter m = n/4,n/8,n/16.

r(t) ()] r(t)®

FX n/4 n/8 =n/16 | n/4 n/8 =n/16 | n/4 n/8 n/16
USD/DEM || -0.013 -0.065 -0.162 | 0.269 0.298 0.435 | 0.170 0.206 0.379
GBP/USD || -0.029 -0.036 -0.091 | 0.288 0.391 0.491 | 0.215 0.308 0.429
USD/JPY | -0.078 -0.037 -0.072 | 0.301 0.352 0.534 | 0.231 0.274 0.479

Table 1 displays the degree of fractional integration d,, of the selected series of returns
their absolute value ands their squares, estimated by using Robinson’s (1995) estimator.
It appears that these series exhibit short-range dependence, a property already noticed by
Henry and Payne (1997) on FX rates returns at 10-minute intervals. This negative serial
correlation can be explained by the bid-ask bounce (Roll, 1984), or the lack of consensus
among market traders on the impact of news on the direction of prices, which persistently
bounce (See Guillaume et al., 1997). The series of absolute returns and squared returns
display a significant degree of long-memory, which confirms that these series have a long-
memory component in their volatility. A second stylized fact is the existence of a strong
seasonality in the volatility, caused by the inappropriateness of the calendar time to the
time heterogeneity of the market activity. Mandelbrot and Taylor (1967) introduced the
concept of intrinsic or fractal time of financial markets, which was further extended by
Mandelbrot to the concept of multi-fractal time by assuming that the rescaling factor is a
function of time:®

o(t + dt) — z(t) = dt’® (14)

where the Hurst exponent varies through time. This leads Dacorogna et al. (1993) to

"The other multivariate LM-ARCH, used in Teyssiére (1997a), did not perform well on these data.
8See Mandelbrot (1997).



propose a different time scale, called ¥-scale, in which the time is normalized by the level
of market activity. The seasonality of the volatility of intra-day returns, which is more
noticeable on the series of absolute returns than on the series of squared returns, casts
some doubts on the relevance of the use of long-memory GARCH type skedastic functions
for these data.® As we are rather concerned with the long-memory properties of the series,
we can consider that these seasonal local variations will not interfere too much with the
long term variations. This can be verified in a further work by considering variables in
J-time.

5 Estimation results

We consider in a first approach to model the negative serial correlation of the conditional
mean by an autoregressive regression function. We select the order of the model by using
the Bayes Information Criterion, although the properties of the BIC have not been formally
established in the presence of conditional heteroskedasticity.'?

The specification for the conditional mean vector Yz = [y1+,y2+,y3+] , where y1 4, yo s
and y3; respectively denote the series of 1000xUSD/JPY, 1000xUSD/GBP, and 1000x
USD/DEM returns, is

]T

Pray1e-1 + P2y 2

Yt K1 €1t
ya | = | m2 |+ | Yo1y00-1 + ooy |+ | e24 (15)
Y3t H3 €3t
’ 13,1Y3,6-1 ’
s s s
eLs 0 116 S12¢ S13¢
with €2, ~ 1.id.N 01, So1,4 S22t S23.t (16)
63,75 0

S31,t S32,t S33,t

9See Guillaume et al. (1995). Seasonal GARCH have been proposed by Bollerslev and Ghysels (1994).
However, the seasonality pattern of intra-day data requires more sophisticated adjustment techniques.

0The presence of a long-memory component in the conditional variance is likely to affect this criteria, as
Beran and Bhansali (1997) have shown that the presence of long-memory in the conditional mean implies a
modification of the BIC so as to obtain a consistent estimator of the order of the autoregressive polynomial.



The retained specification for the CCC-FIGARCH is:

w11+ <1 —(1- L)dl’l) 5%,1:

) wap () (L= deL)(1 = D)2 ,
11, 1— /82(1) 1— /BZL 2,t
S22t
s w 1 — ¢3L)(1 — L)%
S33,t _ 3,3 +(1- ( ¢3 )( ) 6%,7& (17)
12,t 1-—- ,83(1) 1-— ,83L
813t
S93.4 PA/S11,t4/S22,t
PA/S11,t~/833,t
PA/522,t4/833,t

Table 2 page 15, displays the estimation results of the trivariate CCC-FIGARCH. It clearly
appears that the three series share the same degree of long-memory in their conditional vari-
ance, d = 0.17. Furthermore, the series y,; and s y3 4, i.e., the USD/GBP and USD/DEM,
share the same skedastic structure as the log-likelihood of the restricted model, i.e., the
model with the restrictions di 1 = da 2 = d3 3, B2 = 33, and ¢ = ¢3, does not significantly
differ from the log-likelihood function of the unrestricted model. Thus, the LR test does
accept this restriction. This result is similar to the one observed with the same series at
daily frequency. We also observe that the estimated conditional correlations are rather
low.

We now compare these results with the estimation results of the trivariate unrestricted
FIGARCH model. Equation (18) displays the retained specification of the conditional
covariance matrix, the estimation results are given in table 3, page 16.

w11+ (1 -(1- L)dl’l) 5%,15
oy (1 (=D - L)dw> 2,

511t 1-B,(1 1— oL
522t
s33¢ | _ w33 + (1 — (1= ¢sL)(1 - L)d3’3) €34 (18)
S12,t
13,4 w12 + ( —(1 L)dl 2) €1,t€2,¢
S
2ot wL3+-( (1 Lyhs)ghﬂ&t

wa,3 + (1 -(1- L)dQ’S) €2,1€3 1

The unrestricted trivariate FIGARCH model dominates the restricted CCC-FIGARCH,
and since the two first moments of trace(2¢3, ) for the unrestricted trivariate model are



bounded, the estimated model appears stationary. The three conditional variances still
have the same degree of long-memory. However, the USD/DEM and USD/GBP do no
longer have a common skedastic structure. Interestingly, the three conditional covariances
do not share a common degree of persistence with the conditional variances. The con-
ditional covariances Cov,( USD/DEM,USD/JPY) and Cov;(USD/DEM,USD/GBP) share
the same degree of persistence, while the degree of persistence of Cov;(USD/JPY,USD/GBP)
is rather low. These estimation results are consistent with the estimated results of the con-
ditional correlations of the trivariate CCC-FIGARCH model: the correlation coefficients
p12 between USD/DEM and USD/JPY, and pa3 between USD/GBP and USD/DEM where
close, although the restriction p1o = po3 is rejected by the LR test.

We also observe that the coefficient ¢ and g of the three conditional covariances are
not statistically significant. This may be caused by the low conditional correlation between
these series, or a misspecification of the FIGARCH model, which cannot capture very rich
dynamics, although the positivity conditions are not required for the conditional covariance
process.

The inadequacy of the FIGARCH model to capture the seasonality of the volatility
is illustrated by the Ljung-Box statistic Q%(k) based on squared standardized residuals
€2/62. Under the null hypothesis of no remaining heteroskedasticity at the order k, this
statistic is x7_, distributed where [ is the number of GARCH parameters of the skedastic
function. Although the distribution of this statistic in the multivariate case has not been
established, we observe that the null hypothesis is accepted for the series USD/JPY for all
orders. However, this statistic is rejected for the two other series, when the order is over 48,
i.e., one day of observations. For the statistic Q“(k), based on the absolute standardized
residuals, |€;/6|, the null hypothesis is rejected for all orders. This advocates the use of
deasonalized data in 9-time.

We extend this trivariate model by considering a fractionally integrated ARMA (ARFIMA)
regression function. This multivariate double long-memory model extends the univariate
models developed in Teyssiére (1997b) for short-range dependent daily returns with long-
range dependence in their conditional variance. Since these series of intra-daily returns
are anti-persistent, we included this short-range dependent component in the specification
of the regression function. The LR test accepts the hypothesis that the component is the
same for the three series. Furthermore, the series y;; and ys4, i.e., the USD/JPY and
USD/DEM series, also share the same regression function. The retained specification for
the conditional mean vector is:

(1 =11 L) (1 — L)% (y1 4 — 1) E1,t
(1 —tpo1 L) (1 — L)% (yop — po) | = | e2 (19)
(1 — 411 L)(1 — L)% (y3; — ps3) €3t

Estimation results of the restricted model are given in table 4 page 17. This model clearly
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dominates all the previous ones, although the problem of seasonal heteroskedasticity re-
mains.

6 Conclusion

We have estimated here a trivariate Fractional Autoregressive FIGARCH, FAR-FIGARCH,
model on three series of intra-day FX rates returns: USD/DEM, USD/GBP, and USD/JPY.
Estimation results have shown that: (i) the three series are anti-persistent and share the
same degree of anti-persistence d, = -0.0618, (i) the series USD/DEM and USD/JPY
share the same regression function, (i77) the three series share the same degree of long-
memory in their conditional variance d = 0.1614, and (iv) the conditional covariances
Cov¢(USD/DEM,USD/JPY) and Cov,;(USD/DEM,USD/GBP) share the same degree of
persistence d = 0.1038. These long-term and non-periodic similarities are observed only on
the most frequently quoted FX rates. This may reflect a consensus among market traders
on the long term evolution of these currencies.

These results also show the limitations of both the multivariate CCC-FIGARCH, and
the standard long-memory ARCH skedastic functions which cannot model the seasonality
of the volatility when measured in calendar time. The use of series in ¥-time will allow us
to go farther and consider higher-dimensional multivariate long-memory ARCH processes.
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Table 2: Estimation results of the trivariate CCC-FIGARCH. Robust standard error are

between parentheses.

‘ Parameters H Unrestricted model ‘ Restricted model ‘
141 0.0180 (0.0066) 0.0178 (0.0066)
149 -0.0057 (0.0050) -0.0058 (0.0051)
3 0.0051 (0.0057) 0.0048 (0.0057)
P11 -0.1614 (0.0103) -0.1613 (0.0103)
P1,2 -0.0453 (0.0092) -0.0452 (0.0092)
P91 -0.2236 (0.0117) -0.2234 (0.0117)
)22 -0.0622 (0.0103) -0.0622 (0.0102)
P31 -0.1539 (0.0099) -0.1539 (0.0099)
w11 0.1750 (0.0205) 0.1766 (0.0187)
w22 0.0476 (0.0174) 0.0464 (0.0057)
w33 0.0548 (0.0092) 0.0525 (0.0059)
Bo 0.5261 (0.1746) 0.5471 (0.0169)
b2 0.5922 (0.1854) 0.6095 (0.0046)
B3 0.5496 (0.0253) B
b3 0.6146 (0.0095) b2
di 1 0.1733 (0.0171) 0.1714 (0.0137)
dy o 0.1792 (0.0301) di1
ds 3 0.1563 (0.0286) di
P12 0.2107 (0.0116) 0.2112 (0.0116)
P13 0.4580 (0.0102) 0.4585 (0.0102)
P23 0.3945 (0.0124) 0.3947 (0.0125)

| Log-likelihood || -34942.601 | -34944.015 |

Moments of trace(fltflg—)

E(trace(3:3] )= 1.8829

E(trace(2£¢3] )?)=
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Table 3: Estimation results of the trivariate unconstrained FIGARCH model.

standard error are between parentheses.

‘ Parameters H Unrestricted model ‘ Restricted model ‘
11 0.0175 (0.0064) 0.0175 (0.0064)
Lo -0.0058 (0.0049) | -0.0057 (0.0050)
13 0.0034 (0.0056) 0.0034 (0.0056)
P11 -0.1655 (0.0101) | -0.1654 (0.0101)
P12 -0.0430 (0.0089) | -0.0431 (0.0089)
Vo1 -0.2287 (0.0113) | -0.2291 (0.0112)
o2 -0.0606 (0.0101) | -0.0606 (0.0101)
P31 -0.1571 (0.0098) | -0.1572 (0.0098)
w11 0.1822 (0.0199) 0.1842 (0.0179)
wa.2 0.0567 (0.0151) 0.0559 (0.0147)
w3 3 0.1231 (0.0142) 0.1232 (0.0117)
w12 0.0586 (0.0062) 0.0586 (0.0062)
w13 0.0922 (0.0084) 0.0943 (0.0081)
w23 0.0684 (0.0074) 0.0665 (0.0066)
2 0.4919 (0.1312) 0.4951 (0.1236)
b2 0.5549 (0.1412) 0.5569 (0.1272)
b3 0.0523 (0.0205) 0.0515 (0.0194)
dy 1 0.1656 (0.0152) 0.1625 (0.0113)
dao 0.1593 (0.0252) di 1
d33 0.1629 (0.0196) di1
dio 0.0590 (0.0083) 0.0593 (0.0082)
di3 0.1073 (0.0081) 0.1030 (0.0065)
da3 0.0975 (0.0109) di3

| Log-likelihood || -34798.568 | -34799.302 |

Moments of trace(flthtT )

E(trace(2:3]))= 1.7496
E(trace(Z¢3{ )?)= 76.6262
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Table 4: Estimation results of the restricted trivariate double long-memory model. Robust
standard error are between parentheses.

‘ Parameters H Restricted model ‘
1 0.0139 (0.0037)
142 -0.0051 (0.0027)
u3 0.0041 (0.0032)
P11 -0.1036 (0.0100)
P1,2 -0.1685 (0.0118)
P13 P11
d, -0.0618 (0.0072)
w1 0.1835 (0.0180)
wo 2 0.0562 (0.0137)
w33 0.1223 (0.0117)
w12 0.0580 (0.0062)
w13 0.0935 (0.0081)
wo 3 0.0657 (0.0066)
Ba 0.4908 (0.1139)
b 0.5555 (0.1173)
3 0.0529 (0.0198)
diy 0.1626 (0.0114)
do o di
d33 di
di2 0.0600 (0.0082)
di3 0.1038 (0.0065)
do3 dy3

| Log-likelihood || -34772.184 |

Moments of trace(2¢3 )
E(trace(3:3]))= 1.7694
E(trace(2¢ 3 )2)= 83.3956
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