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Abstract
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1 Introduction

Most of the returns on speculative assets R; = In(P;/P,_1), where P, denotes the asset
price at time %, are characterized by the absence of a significant correlation between suc-
cessive observations, which is a consequence of the martingale property of asset prices.
However, their variations are clustered, their conditional variance is predictable, and the
power transformations |Rt|5, where § is a positive real number, of these series exhibit a sig-
nificant persistence and dependence between very distant observations called “long-range
dependence” or “long-memory”.!

Several classes of stochastic processes can mimic these properties: the long-memory
ARCH processes introduced in Robinson (1991), the long-memory stochastic volatility
models proposed by Harvey (1998) and Breidt, Crato and de Lima (1998), the multi-
fractals model of assets returns developed by Mandelbrot, Fisher and Calvet (1997), the
multi-factors models of Gallant, Hsu and Tauchen (1998), and the mixture of ARCH
and IGARCH processes, mixing a transitory and a permanent component, by Ding and
Granger (1996), and Engle and Lee (1999).

We consider here the class of long-memory ARCH models introduced by Robinson
(1991) for testing for dynamic conditional heteroskedasticity, and developed later by
Granger and Ding (1995) and other authors.?2 All these models were concerned with the
univariate modeling of time series. Empirical evidence on futures data,? intra-day foreign
exchange (FX) rates returns (Henry and Payne (1997)), and stock indexes (Ray and Tsay
(2000)), suggest that some time series share the same long-memory component in their
conditional variance. Since some time series are likely to be influenced by the same set of
events, it is straightforward to consider long-memory in the conditional second moments
in a multivariate framework by also modeling the covariation of the series. Furthermore,
a common long-range component or ‘co-persistence’ in a matrix of conditional variances
is of interest for long-term forecasts as the relative variations between these covariances
are only transitory.

We first consider the extension of the univariate long-memory ARCH models in the
restricted multivariate constant conditional correlations (CCC) framework proposed by
Bollerslev (1990). As we observed, using semiparametric estimators, that the volatilities
and the ‘co-volatility’ of some series have a common long-memory component, we propose
a new multivariate unrestricted framework, which models the covariances as long-memory
ARCH processes. We apply these classes to the bivariate modeling of two series of FX
rates returns at daily frequency for the periods September 1971-January 1997 and April
1979-January 1997: the Pound-US dollar, and the Deutschmark-US dollar.

This paper is organized as follows. Section 2 discusses the univariate and multivariate
long-memory ARCH models, Section 3 presents an application to a bivariate modeling of
FX rates returns. Section 4 concludes.

!See Beran (1994) and Robinson (1994) for a survey on long-memory processes.

®See Robinson and Zaffaroni (1997), Ding and Granger (1996), Giraitis, Kokoszka and Leipus (2000)
for rigorous presentations of ARCH(oco) processes.

3See a previous version of this work on futures data. As the sample sizes were a bit short for long-
memory analysis, and we turn to the analysis of FX data.



2 Multivariate long-memory ARCH models

2.1 The long-memory property of time series

Let {y;} be a stochastic process defined by the following autoregressive (AR) representation
(1—a(L))y: =& & white noise (1)

where a(L) is a lag polynomial. We allow for long-memory in {y;} by considering that
the order of o(L) is infinite and that its coefficients a; have the following rate of decay:

jaj| =0 (j7M9) s j— o0 2)

where d is a strictly positive real number, d € (0,1/2), which controls the hyperbolic rate
of decay of the a; and then represents the long-memory property of the series. Several
polynomials satisfy this property:

e The polynomial associated with the fractional d** difference operator, used for defin-
ing the fractional Gaussian noise I(d) process, see Mandelbrot and Van Ness (1968),
Granger and Joyeux (1980) and Hosking (1981). This polynomial is characterized
by the real parameter d. Thus, 1 — «(L) = (1 — L)%, with

_P(] — d) -1 . (14d)
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where I'(e) denotes the Gamma function, d is called the fractional degree of integra-
tion of the I(d) process.

e The polynomials associated with the Gegenbauer process, suggested by Hosking
(1981) and independently introduced by Andel (1986) and Gray, Zhang and Wood-
ward (1989). These processes are characterized by two parameters d and 6, which
are respectively the degree of persistence and the frequency of the singularity of the
process. The coefficients of the Gegenbauer polynomials are defined by
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with «;

where [o] indicates integer part. When § = 0, these polynomials reduce to the
polynomial of the I(2d) process.

e The polynomials defined by the ratio of two Beta functions, introduced by Ding and
Granger (1996)

B(p+j—1,d+1) .
a; B(p,d) , with «j

dl'(p + d)j—(1+d)

o) asj—oo (5



for p,d > 0.* If p+ d = 1, these polynomials reduce to the I(d) polynomial. Since
these polynomials are characterized by two parameters, they are more flexible than
the polynomial of the I(d) process.?

The Gegenbauer polynomials capture long-range dependence with persistent compo-
nent at frequency @, and are then used for modeling macroeconomic data. The two other
polynomials, the coefficients of which are always strictly positive, have been used for mod-
eling the long range dependence in the conditional variance of some financial assets. They

also satisfy
o
Z a;j =1 (6)
j=1

2.2 Long-memory in the conditional variance

Define a conditional heteroskedasticity model as
Ry =m(Ry) + ¢, & ~ iid.N(0,07) (7)

where m(R;) denotes the regression function, the conditional variance o7 depends on the
information set I; consisting of everything dated ¢ — 1 or earlier. Engle (1982) proposed
the ARCH(p) skedastic function:

02 = w+ a(L)e? (8)

where a(L) is a lag polynomial of order p. Robinson (1991) has considered the general
case of conditional heteroskedasticity by resorting to long-memory infinite order lag poly-
nomials, and has proposed the following long-memory ARCH:

o0

o
ol =0’ + Z aj(ef_j —0%) = Z ajsf_j (9)
=1 =1

for some o > 0, where the coefficients {a;}52, of the infinite order lag polynomial c(L)
satisfy equations (2) and (6). Thus, equation (9) defines a long-memory process in the
variance, in which shocks on the error terms have a persistent effect on the conditional
variance. We first consider for «(L) the polynomial defined by the ratio of two Beta
functions. Thus, the long-memory ARCH model becomes

X Blp+j—1,d+1
=3 (p+j—1,d+1) ,

B( ,d) Et—j (10)

j=1

which is a particular case of the long-memory ARCH model derived by Ding and Granger
(1996)
of = (1 - p)o” + pa(L)ef (11)

fp=0,a1=1,0; =0,Vj > 1
*Ding and Granger (1996) report examples of decay of this polynomial for several values of p and d.



where p is a parameter € [0, 1]. In our case p = 1.

This long-memory ARCH is interesting: since the coefficients of «(L) are strictly
positive, there is no restriction for insuring the conditional variance to be strictly positive,
provided that the ratio of the Beta functions exists, i.e., p > 0 and d > 0, and at least one
of the past error terms ¢; is different from zero, which are rather mild constraints. We
extend this model by considering parameterized real powers for both o; and €;. Thus, the
long-memory ARCH model (10) becomes:

5 _~Blpti-1d+1),

P T Y 12

Long-memory in the conditional variance is also modeled by using the ARMA param-

eterization of some GARCH type processes, and considering fractional roots in the AR

component of this ARMA parameterization. We then obtain the class of Fractionally

Integrated GARCH processes, which bridges the gap between GARCH and Integrated
GARCH processes. A FIGARCH(!,d, q) process is then defined as

d
w=oe  oF % N (1_ (1—¢(L) (1 - L) )65 13)

=173

where (L) and ¢(L) are lag polynomials of respectively finite order p and ¢, B(L) =
Yo BiL7, ¢(L) = 7%, ¢;L7, the roots of 1 — B(L) and 1 — $(L) being outside the unit
circle.b

These ARCH(o00) processes have been designed for representing the long-memory prop-
erties of the squared and absolute returns, the autocovariance function of which is typical
of long-memory processes:

Cov(R?,R.,) ~Ck* ! as k— oo (14)

where C' is a positive constant. The covariance function is not absolutely summable.
However, according to Giraitis, Kokoszka and Leipus (2000), Kazakevic¢ius and Leipus
(2000), Kazakevicius, Leipus and Viano (2000), the long-memory ARCH considered here
are not stationary. The equations defining the ARCH(oo) process proposed by Ding and
Granger (1996) admit a unique covariance stationary solution if 4 < 1/4/E(e?). In that
case, this ARCH(oo) is short memory since

Cov(R}, R}, ;) ~ Ck™% 1 as k— oo (15)

which is different from equation (14) and is absolutely summable.

Furthermore, the heuristics arguments for the existence of a strictly stationary solution
to the equations (13) given in Baillie et al. (1996) are questionable: the authors argue
that the coefficients of the polynomial a(L) of a FIGARCH process are dominated by
those of an IGARCH process. Given that Bougerol and Picard (1992) and Nelson (1990)

5The link between this FIGARCH model and the previous long-memory ARCH model, is given in
Robinson and Zaffaroni (1997).




have demonstrated that the IGARCH process is strictly stationary and ergodic, they
conclude that the FIGARCH process is also strictly stationary and ergodic. This assertion
is incorrect since the coefficients of a(L) for an IGARCH process decrease exponentially,
while the coefficients of (L) for a FIGARCH process decrease hyperbolically. Strict
conditions for the existence of stationary solutions to ARCH(o0) equations, requiring some
constraints on the coefficients (L), are given in Giraitis, Kokoszka and Leipus (2000),
and very recently in Kazakevicius and Leipus (2000), who extended the results of Nelson
(1990) and Bougerol and Picard (1992).

The richer parameterization of the FIGARCH allows a greater flexibility than the
long-memory ARCH model presented above. The counterpart of this flexibility is a more
restrictive set of conditions for insuring the conditional variance to be strictly positive for
all t. While the necessary and sufficient conditions for a FIGARCH(1, d,0) model are not
too constraining: f < d <1 and w > 0, the sufficient conditions for a FIGARCH(1,d, 1)
are more restrictive’

w>0,-d<¢<(2-d)/3, d(¢—(1-4d)/2) <B(p—p+d) (16)

This set of restrictions also applies to others extensions of GARCH-type models to frac-
tional situations. We alternatively can use a log transformation of the conditional vari-
ance, like the FIEGARCH model proposed by Bollerslev and Mikkelsen (1996). However,
as mentioned by Pagan (1996), the IEGARCH model is not identifiable by Quasi Maxi-
mum Likelihood (QML), thus if d tends to 1, the same problem is likely to occur for a
FIEGARCH.

2.3 Multivariate long-memory skedastic functions

Let R; be a n-dimensional vector long-memory ARCH process
Rt = m(Rt) + Ety Ep v ii.d. N(O, Et) (17)

where m(R;) denotes the vector regression function, €; is a n-dimensional vector of Gaus-
sian error terms with conditional covariance matrix 3;. We first consider a long-memory
extension of the constant conditional correlations model (CCC) proposed by Bollerslev
(1990), where the conditional covariance matrix 3; has as typical element s;;;, with

& B(pi+k—1,d; +1)
2 ’ 2 .
Sii,t = Uii,t = Z ? B(pz’dZ)Z €i,t—k7 7 = ]_’...’n
k=1
Sijt = PiOiitjit,  HJ=1...m iF] (18)

where p;; € (—1,1) denotes the conditional correlation which is supposed to be constant.
This parsimonious diagonal specification insures that the conditional covariance matrix
is always positive definite, and that the multivariate long-memory ARCH process is sta-
tionary if all the univariate processes in the main diagonal are stationary.® However, as

"See Bollerslev and Mikkelsen (1996).
8See Bollerslev (1990), Bera and Higgins (1993), Bollerslev, Engle and Nelson (1994), Engle and Kroner
(1995), or Pagan (1996), for surveys on multivariate ARCH processes.



mentioned above, the long-memory ARCH processes might be non-stationary, and in that
case the CCC specification is not helpful for this purpose.

This process can be extended by using a parameterization similar to equation (12) as
follows:

o0
B(pi+k—1,d; +1 5
St = UiQi,ta Ugi,tzz (p: B d’.)z )|€i,t—k| ,i=1,...,n
k=1 (2]
Sijt = PijOiutdjjt, J=1...,n i#] (19)

We also consider the multivariate CCC-FIGARCH process:

w; (1 — (L)) — L) ,
Siit = Jz'zi,t: 1_751.(1)4- (1— lz—ﬁi(L) E:‘Zt, t1=1,...,n
Sijt = PijCiit0iit, LI =1...,n 1#] (20)

Lastly, we propose two alternative unrestricted parameterizations for the conditional
covariance matrix 3, with typical element s;; ;:
siip = i B(pij +k—1,dij +1)
it =
Pt B(pij, dij)

Eit—kEjt—k> Z,] = ]-a RS 1] (21)

and
st = g+ (1- B BuDIOL
1= 850D 1 - Bi;(L)

Since there is no analytically tractable set of conditions for insuring 3; to be posi-
tive definite for all ¢, we implement the positive definiteness constraint in the estimation
procedure by imposing this constraint.

This unrestricted long-memory ARCH process is stationary provided that 3; is a
measurable function on the information set I, and trace(X;X, ) is finite almost surely.
The latter condition holds if the moments are bounded, i.e., E(trace(X:X, )?) is finite for
some p.? However, given the lack of theoretical results for univariate long-memory ARCH
processes, the issue of stationarity for multivariate processes is still open.

Since we are working with data at daily frequency, we can reasonably assume that the
error terms are normally distributed.!’ In that case, the log-likelihood function of the
multivariate long-memory ARCH model is:

> 81'7,58]',15, i,j = 1, R (22)

T
£r(Q) = =" n@m) — 33" (%] + ] ) (23)
t=1
where ¢ and T respectively denote the set of parameters and the sample size. The robust
estimators of the variances are given by the heteroskedastic consistent “sandwich” covari-
ance matrix T~ H~1({) Z(¢) H~(¢), where H(C) and Z({) are respectively the Hessian
and the outer-product-of-the-gradient matrices evaluated at the Quasi Maximum Likeli-
hood (QML) estimates (.
9See Bollerslev, Engle and Nelson (1994).
0The departure to normality does not affect the QML results with data at daily frequency. However,

this assumption is difficult to maintain with very high-frequency data, the leptokurtosis of which can be
captured with ¢-distributed error terms with ¢ < 7 or Generalized Exponentially Distributed error terms.




3 Application to the bivariate modeling of exchange rates

We consider several bivariate long-memory ARCH models for two series at daily frequen-
cies: the log of returns on the Pound-US dollar, and the Deutschmark-US dollar exchange
rates, defined by R; = 1001In(P;/P,_1), where P; denotes the exchange rate at time ¢. We
consider here observations from the 24 August 1971, after the collapse of the Bretton-
Wood fixed exchange rate system, until January 1997. Several limited variation exchange
rates systems have been instituted after this collapse. In particular, during this floating
period, some European currencies were governed by several mechanisms limiting their rel-
ative variations. The “Snake in the Tunnel” mechanism allowed these currencies to vary
by a maximum of +1.5% against each other, the “Snake”, and by a maximum of +2.5%
against the dollar, “the Tunnel”. Belgium, France, Italy, Luxembourg, The Netherlands,
and West Germany were the first participants. UK joined one month after and with-
drew six weeks afterwards. Later, the reference to the dollar was abandoned, and then
the system became the “Snake”, in which parities were several times realigned. Later, in
March 1979, the European Monetary System (EMS) replaced the “Snake”. UK joined the
EMS in 1990 and left two years later. Two related works lead us to consider the choice
of two periods. Kokoszka and Leipus (2000) proposed a CUMSUM based estimator for
change-point in ARCH(o00) processes at time t. This estimator is defined by:

- min{|Ct| — max |Cj|} (24)

t 1<G<T

where

t T
=121 (w YR Y Rg) (25)
j=1 j=t+1
Kokoszka and Leipus (2000) apply this test to the same data set we use in this work. They
detected a change in regime in the ARCH structure after the EMS inception in April 1979:
t reaches a maximum for ¢ = 2100, which is around September 1979, although the pattern of
the plot of |C}| steeply increases before that date. Mardle, Spokoiny and Teyssiére (2000),
considered also the same data set for the adaptive estimation of a stochastic volatility
model, based on the method developed in Spokoiny (1998). This adaptive method consists
in finding the largest interval of homogeneity for the parameters of a stochastic volatility
(SV) model. They observed a significant change in the estimated parameters of the SV
model at the same time point, for both series. This means that the change point may
have occurred before as these adaptive methods detect gradual changes with some delay.
Bollerslev (1990) mentioned that a break caused by a change in operation procedures of
the US Federal Reserve Bank in October 1979 can be also considered.
We then consider two periods: 24 August 1971-21 January 1997 (6630 observations),
after the collapse of the Bretton-Wood system, and the EMS period, April 1979- 21 Jan-
uary 1997 (4646 observations).!!

111 an earlier version of the paper, we also consider other periods before the EMS. Estimation results
and tests have shown that these sub-periods are not of interest.



3.1 Semiparametric analysis

In a first approach, we estimate nonparametrically the long-memory component in the
volatility of the two series. Since the volatility of a series R; can be approximated by its
absolute value transformation |R;|,'? we can define the “co-volatility” between the series
Ri; and Ry, by the quantity /|Ri+R2.:. We use Robinson’s (1995) semi-parametric
discrete version of Whittle (1962) approximate ML estimator in the spectral domain.
This estimator, suggested by Kiinsch (1987), is based on the mild assumption that the
spectrum f()\) of a long-memory time series can be approximated in the neighborhood of
the zero frequency as

f(A) ~GA™2 as A\ — 0T  where G is a strictly positive finite constant (26)

The consequences of a misspecification of the functional form of the spectrum in the
Whittle estimator are avoided with this local approximation. After concentrating in G,
the estimator is given by:

d = argmin < In 1 i I(_)\de) _ f: In(A;) (27)
d M A j=1

7j=1 m =

where I(});) is the periodogram estimated for the range of Fourier frequencies \; =
wj/T,5 = 1,...,m < [T/2], the bandwidth parameter m tends to infinity with 7', but

more slowly since

1 m

E—}_?—)O as T — oo (28)
Under appropriate conditions, which include the existence of a moving average repre-
sentation, this estimator is root-m consistent, asymptotically normally distributed, with

distribution independent of the value of d:

Vi(d—d)~ N (o, %) (29)

Henry and Robinson (1996) have derived the formula for a data driven optimal bandwidth

. —2d
Mept- They assume that the spectrum takes the form f(A) = ‘1 — e’)“ h(X\) as A — 0T,

where h(-) is twice continuously differentiable with A(0) > 0. They derive the optimal
bandwidth m,p,; by minimizing the mean squared error:

Mot = (i—:) Ba(d)|? (30)

where, following Delgado and Robinson (1996), Es(d) is approximated by :

2Gee Granger and Ding (1995).



where h(0) and A" (0), the first and third coefficients of the asymptotic expansion of the
spectrum, are estimated by the periodogram least squares regression:
l.

—2d 2N
I(\) = ‘1 — M Z l—!Jﬁl + residuals (32)

for the band of frequencies A;, j = 1,. m©, where m(® = n’ is a first approximation of
the bandwidth parameter. Henry and Roblnson (1996) proposed the iterative procedure

(k)
. _ 9 7(\) 2d h
d*) = arg min { ( Z )\—2d ) - Z In(A } (33)

4

3n\3
~ (k+1) — Qe
i (47r)

B, ()]

We estimate d for several values of the bandwidth parameter m, and we obtain:

(34)

Table 1: Estimation of the fractional degree of integration for the series of absolute returns
on Pound-Dollar |R; |, Deutschmark-Dollar |Ry |, 1/|R1,Rz2,:| for the period April 1979 -

January 1997. mp: denotes the optimal bandwidth. Asymptotic standard errors (2/m) ™"
are between parentheses

m | Ry | Ro i \/|R1,tR2,t|
T/4 | 0.2385 (0.0147) | 0.2312 (0.0147) | 0.2413 (0.0147)
T/8 0.3071 (0.0207) 0.3219 (0.0207) 0.3230 (0.0207)
T/16 || 0.4113 (0.0293) | 0.4073 (0.0293) | 0.4393 (0.0293)
mopt || 0.3459 (0.0323) | 0.3431 (0.0325) | 0.3575 (0.0324)

Alternatively, we can estimate the intensity of long-memory in the volatilities and co-
volatility by using the semiparametric estimators proposed by Giraitis, Kokoszka, Leipus
and Teyssiére (2000), henceforth GKLT, for the long-memory volatility model proposed
by Giraitis, Robinson and Surgailis (1999). These estimators, based on the KPSS and
the centered KPSS statistic, are in spirit similar to the Hurst (1951) R/S “pox-plot”
estimator, developed by Mandelbrot and his co-authors: the range of the partial sum
process Sy = E;-:l(Yj — Y7) is replaced by its second moment and its variance.

The standard R/S method is based on the rescaled range statistic defined as RT / S'T:

RT B G2 _ -1 d V)2
e (jme, S~ min Si) /7 where S5 =T Y% T (35)

where Ry is the range and S$% is a standard variance estimator. Given that

k k
S (Y; = Yr) =) _(Y; — EYj)
7j=1 7j=1

k T
- 7 2% - BY)) (36)

7j=1

9



and
1 7] DI[0,1]
Tijerd 22 Vi = BYj) = CWyj244(t) (37)
j=1

]

. e D[0,1 .
where C is a positive constant, and [—> means weak convergence in the space D[0, 1]

endowed with Skorokhod topology. Then

Rr 4
T1/2+d - C

0 . 0
012?5)(1 W1/2+d(t) - 012751;11 W1/2+d(t)] , (38)

W10/2+d(t) being the fractional Brownian bridge: W10/2+d(t) =Wija1a(t) —tWiop4(1). Tt
is equally easy to verify that 5‘% — VarY;. Thus,

1 Ry 4 C[maxocics Wi, 4(t) — mingcict Wy, ()]
T1/2+d g_T - Var(Y7)1/2

(39)

Equation (39) constitutes a theoretical foundation for the R/S estimator. Taking
logarithms of both sides yields the heuristic identity:

PN 1
log (RT/ST) A (5 + d) log T + constant, as T — oo, (40)

log(RT/ST) 1
T — - ThUS,

1/2 + d can be interpreted as the slope of a regression line of log(RT / ST) on logT.
GKLT (2000) observed that any other continuous functional of the partial sum process
can be used in place of the range in equation (35) and considered the KPSS and centered
KPSS statistics, respectively proposed by Kwiatkowski, Phillips, Schmidt and Shin (1992)
and Giraitis, Kokoszka and Leipus (1999).
The KPSS statistic is defined as:

which can also be written as JR/S —d=0p(1/logT) with dR/S =

My 1 E
Jr=-— with Mpy==Y 82 41
T T (’

i.e., the range has been replaced by the second moment. By equation (37),

M 1 2
S S o /O (W0 a(®)] . (42)

Hence, defining dx pgs = log Zr/2log T, we get
CZKPSS—d:Op(l/IOgT). (43)

Thus, the slope of the regression line of log Zr on log T estimates 2d.
Giraitis, Kokoszka and Leipus (1999) proposed a centering of the KPSS and defined
the statistic Ur statistic A
A VT
= =5 4.4
=g (449)

10



where

T (Z 2

Sp— = S 45
xoior (%) .
The range has been here replaced by the variance. As above, we conclude that the regres-
sion of log Uy on log T estimates 2d. Setting JV/S = log UT/2 log T, we get JV/S —d =
Op(1/1ogT)).

The technical details of the implementation of these “pox-plot” estimators are de-
scribed in Beran (1994) and GKLT (2000). The sample of T observations is subdivided
in B adjacent and non-overlapping blocks of observations of equal size [T//B]. We then
obtain a grid t; = 1, = [T/B|+1,...,t; = (i — 1)[T/B] +1,...,tp =T — [T/B] + 1.
For each point of the sequence {t;}2, we define a sequence of K increasing nested blocks
with origin ¢;, i.e., {[t;;t; + kj] szl, such that ¢; + k; < T, the sequence of K steps
{kj}]K:l is given by a logarithmic grid. We calculate the R/S, V/S and KPSS statistics
for each interval {{[t;,t; + kj]}f;l}JK:l and obtain the sequences {{R/S(ti,kzj)}le}f:l,
{{V/5(ts, k;) Y21 S, and {{KPSS(t;, k;)}2.,}J<,. We plot the logarithm of these statis-
tics log(R/S(ti, k;), log(V/S(ti, k;), log(KPSS(t;,k;), against log(k;) and then obtain a
“pox-plot”. We apply these “pox-plot” estimators on the series of volatilities and co-
volatilities, and we obtain:

N 1
VT:?

Table 2: Estimation of the fractional degree of integration for the series of absolute returns

on Pound-Dollar |R; ¢|, Deutschmark-Dollar |Ry |, 1/|R1Rz2,| for the period April 1979 -
January 1997.

|Rigl | [Rol \/|R1,tR2,t|

KPSS || 0.2606 | 0.2340 0.2762
V/S 0.2473 | 0.2216 0.2533
R/S | 0.2671 | 0.2350 0.2712

These results show that the two volatilities and the co-volatility share the same degree
of long-memory for all the values of the bandwidth parameter m of the Whittle estimator,
and for all the “pox-plot” estimators. Since the CCC model cannot account for the long-
memory property of the conditional covariance, we expect that the unrestricted model,
which takes into account the long-memory component in the conditional covariance, will
have a better fit with the data.

3.2 Estimation of a bivariate model

We estimated the following bivariate long-memory ARCH:!3

13We truncate the expansion of the infinite order polynomial at the order 2000.
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Table 3 p 19 reports the QML estimates of the constant conditional variance long-memory
ARCH model (A) for (i) the period 1979-1997, (i) the same period subject to the con-
straint that the parameters of the two conditional variances are equal, i.e., di = dy and
p1 = po, and (i4i) for the period 1971-1997.

It clearly appears that for the period 1979-1997, the two series share the same degree of
long-memory in the conditional variance, since the estimated values for d; and dy are very
close. The constraints d; = dy and p; = py are accepted by the likelihood ratio (LR) test,
and the more parsimonious constrained model is then preferable. The estimation results
for the period 1971-1997 are less appealing. The two long-memory parameters largely
differ. This result completes Bollerslev’s (1990) result, who observed with a multivariate
GARCH model on weekly data, a difference between these two periods in the estimated
parameters explained by the inception of the EMS in March 1979. The EMS system has
modified both the short-term and the long-term variations of the volatilities of exchange
rates returns.'

Table 4 p 19 reports the QML estimates of the constant conditional variance long-
memory ARCH model, model (B), for (i) the period 1979-1997, (i7) the same period with
the restrictions p; = pe and di = dy, and (44i) for the period 1971-1997. The restriction
0 = 2 is rejected by the LR test. However, some parameters are instable for the two larger
samples: this may be due to the misspecification of the model, as the assumption of a
constant conditional correlation is too restrictive.

Table 5 p 20 displays the estimation results for the bivariate CCC-FIGARCH model.
The log-likelihood value is higher than the one of the CCC long-memory ARCH model
considered above, and the trade-off between the increase of the value of the log-likelihood
function and the increase of the number of parameters leads us to choose the less parsi-
monious CCC-FIGARCH model.!> As observed above, the degrees of long memory are
the same for the period 1979-1997. Furthermore, the LR test accepts the hypothesis of
equality of parameters 8 and ¢ for the two conditional variances. We will see later that
the equality ¢1 = ¢9 is likely to be the consequence of the restrictive parameterization of
the CCC-FIGARCH.

Tables 6 and 7 p 21 display the estimation results for respectively the unrestricted
models (D), and (E). Column (i) contains the QML estimates for the unconstrained
model, column (iz) contains the estimates for the model with the restrictions di = do = d3,
and column (7i7) contains estimation results for the whole period 1971-1997. It is clear
that the constant conditional correlation assumption for the models (A, B, C) is too
strong since the value of the log-likelihood function is strongly improved. We also observe
that the multivariate unrestricted FIGARCH model has a better fit with the data than
the multivariate unrestricted long-memory ARCH model: the value of the log-likelihood

“We have also estimated the models (A) for the period 1971-1997, with two different conditional
correlations, the first for the period 1971-1979, the second for the period 1979-1997. The LR test rejects
the restriction that these two parameters are equal, and still rejects the restriction that the two degrees of
long-memory are the same.

5The statistical properties of the standard parsimony criteria, the Akaike (AIC) and Bayes (BIC)
Information Criteria, have not been established for the class of long-memory ARCH process. Beran,
Bhansali and Ocker (1998) results on the BIC for ARFIMA (p,d, 0) models casts doubts on the use of the
BIC for long-memory volatility models.
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function increases strongly, and usual parsimony criteria, e.g., the Akaike Information
Criteria or the Bayes Information Criteria, favors the multivariate unrestricted FIGARCH
model. As expected, the estimation of the multivariate FIGARCH is more problematic;
a sensible choice of starting values is necessary, but the model looks well specified since
we did not encounter too much problems. In this optimization problem, the conditional
covariance matrix ¥; should be positive definite for all t. Consequently, the step size of
the line search procedure of the BFGS algorithm is quite small at the beginning of the
optimization process, but the algorithm converges to an optimum satisfying the positivity
constraint.

As expected from the results of the semiparametric analysis, all the elements of the
conditional variance matrix, i.e., the two conditional variances and the conditional covari-
ance, display the same degree of long-memory: the correlations between the estimated
parameters are very high, and the restriction d; = do = d3 is accepted by the LR test for
both models (D) and (E) for the EMS period. Furthermore, the restriction 51 = 82 = 33
for model (E) is also accepted by the LR test for the same period. In a standard GARCH
framework, the polynomial ¢(L) captures the local variations, while the polynomial 5(L)
captures the long-term variations. In our case, this interpretation is less obvious in a long-
memory framework as the polynomial ¢(L) enters in an intricate way in the expression of
the infinite order lag polynomial «(L).

We estimate the models (D, E) with the restriction d; = dy = ds for the period
1971-1997. This restriction is accepted by the LR test. This result is due to the larger
proportion of EMS observations in our sample, since this restriction is rejected when we
consider only the first 5500 and 3500 observations from 1971.

This equality in the long-memory parameter for the same FX market suggests that this
parameter is linked to the features of the market. A first consequence of the inception of a
target zone system is a reduction of the level of variation of FX rates volatility. Interested
readers are referred to Engle and Gau (1997) for more details. However, little more can be
said using standard economic models. A theory has been recently produced by Kirman and
Teyssiere (2000), who considered a model with heterogeneous and interactive agents on
FX markets. These agents are either “fundamentalists”, i.e., they consider that FX rates
do not depart too much from a series of fundamentals variables, or “chartists”, i.e., they
forecast FX rates by linear interpolation from the past. This model differ from standard
“noise traders” models, by assuming that the size of each group is not fixed, but evolves
through an epidemiologic process which herds on the extremes, i.e., the whole population
is either fundamentalist or chartist. Kirman and Teyssiere (2000) observed that (i) the
level of long-memory is positively linked to the herding probability, and (i7) the property of
common long-memory in the volatilities and co-volatility is obtained by assuming that the
process governing the proportion of chartists/fundamentalists is the same for all markets.

4 Conclusion

We have proposed two classes of multivariate long-memory ARCH models. One of them,
the constant conditional correlation (CCC) model, requires few constraints in the estima-
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tion procedure, but a strong restriction on the functional form of the conditional covariance
matrix. This constraint appeared to be too strong since the long-memory CCC model is
outperformed by the unrestricted long-memory conditional covariance model. We have
applied these models to the bivariate modeling of the returns on two exchange rates, and
have observed that for the period 1979-1997, after the EMS beginning, these two series
have the same long-memory component in the conditional variance. The class of unre-
stricted conditional covariance models allowed us to go farther by showing that all the
elements of the conditional covariance matrix share the same degree of long-memory.

This class of multivariate long-memory models can also be trivially extended by com-
bining ARCH(o0) functions of different type in the conditional covariance matrix.

Another issue for future research is the extension of the concept of co—persistence in
the conditional variance, developed by Bollerslev and Engle (1993), to the fractional case,
although the idea of “fractional cointegration” for conditional variance processes is not
yet supported by a theoretical model. (See Pagan (1996)).
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A Estimation results

Table 3: Estimation results of bivariate long-memory ARCH process, with constant con-
ditional correlation, model (A). (Robust ¢-statistics between parentheses).

\ | (6) 1979-1997 [ (i6) 1979-1997 | (iéi) 1971-1997 |

(i1 -0.0032 (-0.32) | -0.0036 (-0.30) | -0.0072 (0.80)
12 ~0.0003 (-0.03) | 0.0000 (0.00) | -0.0174 (1.41)
) 5.8472 (4.42) | 6.0607 (5.66) | 2.9486 (2.67)
P2 6.3221 (4.88) - 41063 (2.50)
d; 0.4496 (8.11) | 0.4379 (11.66) | 0.5495 (3.916)
ds 0.4309 (11.47) — 0.3475 (14.70)
P) 0.7196 (67.49) | 0.7197 (67.54) | 0.6192 (32.61)

Log-likelihood | -7139.2294 ~7139.7738 ~9388.7127

Table 4: Estimation results of bivariate long-memory ARCH process, with constant con-
ditional correlation, model (B). (Robust ¢-statistics between parentheses).

| (i) 1979-1997 | (ii) 1979-1997 | (id4) 1971-1997 |

11 -0.0047 (0.52) | -0.0043 (-0.49) | -0.0066 (0.89)
112 -0.0018 (0.17) | -0.0012 (-0.12) | -0.0096 (1.68)
) 2.5931 (3.18) | 2.8592 (3.77) | 2.3645 (1.69)
P2 3.1258 (3.61) — 1.8856 (3.24)
d 0.2385 (3.98) | 0.2413 (4.60) | 0.6657 (2.48)
ds 0.2427 (4.73) — 0.2192 (4.12)
5 2.3687 (19.49) | 2.3661 (20.12) | 2.4004 (13.08)
P) 0.7383 (72.86) | 0.7380 (72.89) | 0.6628 (41.43)

Log-likelihood | -7117.6135 ~7119.7266 ~9368.2204
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Table 5: Estimation results of bivariate CCC-FIGARCH, model (C). (Robust ¢-statistics

between parentheses).

| G

) 1979-1997 | (i1) 1979-1997 | (44) 1971-1997 |

) -0.0039 (-0.44) [ -0.0036 (-0.41) | -0.0059 (-0.88)
12 20.0020 (-0.20) | -0.0014 (-0.14) | -0.0154 (-1.81)
w1 0.0218 (2.79) | 0.0230 (3.15) | 0.0081 (2.70)
ws 0.0320 (2.71) | 0.0293 (3.18) | 0.0441 (1.37)
B 0.5638 (7.27) | 0.5628 (9 82) | 0.7586 (9.28)
B 0.5573 (9.18) 0.4016 (3.00)
di 0.2882 (6.40) | 0.2727 (6.67) 0.6692 (4.14)
ds 0.2529 (5.27) — 0.2302 (2.65)
b1 0.3687 (5.20) | 0.3775 (7.56) | 0.3010 (3.06)
b2 0.3862 (7.33) — 0.2895 (3.50)
P) 0.7448 (76.00) | 0.7446 (75.58) | 0.6734 (46.76)
Log likelihood || -7090.8634 ~7091.9627 ~9198.5869
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Table 6: Estimation results of bivariate long-memory ARCH process, model (D). (Robust

t-statistics between parentheses).

Table 7: Estimation results of the unrestricted bivariate FIGARCH, model (E). (Robust

| G

) 1979-1997 | (ii) 1979-1997 | (444) 1971-1997 |

11 0.0008 (0.09) | 0.0008 (0.09) | -0.0078 (-0.91)
112 0.0007 (0.07) | 0.0007 (0.07) | -0.0067 (-0.84)
) 47013 (3.82) | 4.6433 (4.67) | 4.1442 (3.19)
P2 5.1265 (4.72) | 5.1192 (5.01) | 3.7340 (2.89)
3 5.5434 (4.90) | 5.4724 (5.91) | 3.8172 (4.29)
d 0.4683 (5.89) | 0.4655 (6 89) | 0.3817 (6.18)
ds 0.4661 (6.24) 0.3648 (8.35)
ds 0.4705 (5.20) — 0.3526 (5.42)
Log likelihood | -6736.0071 | -6736.6535 ~8771.3637

t-statistics between parentheses).

) 1979-1997 | (i1) 1979-1997 | (44) 1971-1997 |

11 -0.0011 (-0.13) [ -0.0009 (-1.11) | -0.0052 (-0.88)
112 -0.0008 (-0.90) | -0.0006 (-0.07) | -0.0063 (-0.83)
w1 0.0108 (2.84) | 0.0107 (2.97) | 0.0062 (2.00)
ws 0.0131 (2.91) | 0.0129 (3.00) | 0.0149 (1.10)
w3 0.0085 (2.43) | 0.0085 (2.50) | 0.0031 (0.61)
B 0.6417 (10.91) | 0.6414 (12.82) | 0.6895 (7.19)
B 0.6376 (11.68) — 0.5987 (2.58)
Bs 0.6432 (11.15) — 0.6388 (3.98)
d; 0.4235 (7.12) | 0.4187 (7.75) | 0.5650 (3.91)
da 0.4179 (6.02) — 0.4278 (1.32)
ds 0.4225 (6.88) — 0.4741 (2.07)
b1 0.3243 (8.29) | 0.3296 (10.24) | 0.2799 (4.35)
b2 0.3089 (8.26) | 0.3197 (9.75) | 0.2860 (3.99)
b3 0.2965 (3.93) | 0.2994 (9.60) | 0.2649 (3.69)
Log-likelihood || -6683.9150 ~6684.1682 ~8586.5104
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