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Abstract. We compare three methods of constructing confidence in-
tervals for sample autocorrelations of squared returns modeled by mo-
dels from the GARCH family. We compare the residual bootstrap, block
bootstrap and subsampling methods. The residual bootstrap based on
the standard GARCH(1,1) model is seen to perform best.

1 Introduction

The paper is concerned with assessing finite sample performance of several me-
thods of finding confidence intervals for autocorrelations of squared returns on
speculative assets. While the returns themselves are essentially uncorrelated and
most econometric and financial models explicitely imply that they are so, their
squares exhibit a rich dependence structure. The sample autocorrelation of squa-
red returns ρ̂n,X2(·) is a measure of volatility clustering. A large value for ρ̂n,X2(·)
is the evidence of either the presence of long memory in the volatility process,
or the inadequacy of a GARCH(1,1) process to fit the data under investigation
as the true process might be a non–homogeneous GARCH(1,1) process; see [6].

We compare the performance of the various methods by means of their empi-
rical coverage probability (ECP). Suppose we have a method of constructing, say,
a 95% confidence interval (l̂n, ûn) from an observed realization X1, X2, . . . , Xn.
We simulate a large number R of realizations from a specific GARCH type mo-
del from which we construct R confidence intervals (l̂(r)n , û

(r)
n ), r = 1, 2, . . . , R.

The percentage of these confidence intervals that contain the population auto-
correlation is the ECP, which we want to be as close as possible to the nominal
coverage probability of 95%. Our objective is to provide answers to the following
questions: Does any method have better ECP than the others? If not, what is the
range of optimal applicability of each method? Is it better to use equal-tailed or
symmetric confidence intervals (see Section 2.1)? How does the coverage depend
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828 P. Kokoszka, G. Teyssière, and A. Zhang

on the value of γc2 ? For a given series length n, how should one choose the block
length b for the block bootstrap and subsampling? For what lengths n do these
methods yield useful confidence intervals?

The ultimate goal is to recommend a practical procedure for finding confi-
dence intervals for squared autocorrelations which assumes minimal prior kno-
wledge of the stochastic mechanism generating the returns.

For ease of reference, recall that the sample autocovariances of the squared
returns are

γ̂n,X2(h) =
1
n

n−h∑

t=1

(
X2

t − 1
n − h

n−h∑

t=1

X2
t

)(
X2

t+h − 1
n − h

n∑

t=h+1

X2
t

)
, (1)

the population autocovariances are γX2(h) = E
[
(X2

0 − EX2
0 )(X2

h − EX2
0 )
]
,

while the corresponding autocorrelations (ACF) are

ρ̂n,X2(h) =
γ̂n,X2(h)
γ̂n,X2(0)

, ρX2(h) =
γX2(h)
γX2(0)

. (2)

In Section 2, we describe the three methods. Section 3 introduces the various
GARCH models we use for the comparison. The results of our simulations are
presented in Section 4 with broad conclusions summarized in Section 4.3.

2 Confidence Intervals for ACF of Squared Returns

2.1 Residual Bootstrap

To illustrate the idea, we consider the ARCH(1) model given by

Xt = σtZt, σ2
t = ω + αX2

t−1. (3)

As we will see in Section 3, the method can be readily extended to any parametric
model defined by GARCH type equations by computing the residuals Ẑt =
Xt/σ̂t. Since the conditional volatility σ2

t is a function of the model parameters,
past observations and past innovations, σ̂2

t can be computed recursively once
parameter estimates are available. We then proceed as follows:

1. Estimate ω̂ and α̂ and compute Ẑt = [ω̂ + α̂X2
t−1]

−1/2Xt, with X0 = X̄t. We
use the quasi maximum likelihood estimators (QMLE’s) of model parameters
with the assumption that the innovations Zt ∼ N(0, 1).

2. Form B bootstrap realizations X2
t (b) = [ω̂ + α̂X2

t−1(b)]Ẑ
2
t (b), t =

1, 2, . . . , n, where Ẑ2
1 (b), . . . Ẑ2

n(b), b = 1, 2, . . . , B, are the B bootstrap sam-
ples selected with replacement from the squared residuals Ẑ2

1 , . . . Ẑ2
n.

3. Calculate the bootstrap autocorrelations ρ
(b)
n,X2(1), b = 1, 2, . . . , B and use

their empirical quantiles to find a confidence interval for ρn,X2(1).
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We now enlarge on step 3). Denote by F ∗
ρ(1) the EDF (empirical distribution

function) of the ρ
(b)
n,X2(1), b = 1, 2, . . . , B. The (α/2)th and (1−α/2)th quantiles

of F ∗
ρ(1) will yield an equal-tailed (1 − α) level confidence interval. To construct

a symmetric confidence interval centered at ρ̂n,X2(1), we need the empirical
distribution F ∗

ρ(1),|·| of the B values |ρ(b)
n,X2(1) − ρ̂n,X2(1)|. Denote by q|·|(1 − α)

the (1 − α) quantile of F ∗
ρ(1),|·|. Then the symmetric confidence interval is

(
ρ̂n,X2(1) − q|·|(1 − α), ρ̂n,X2(1) + q|·|(1 − α)

)
.

A usual criticism of methods based on a parametric model is that misspeci-
fication can lead to large biases. In many applications however these biases have
only negligible impact on a statistical procedure of interest. In our setting, we
will see that the residual bootstrap confidence intervals based on a misspecified
model can produce good coverage probabilities.

2.2 Block Bootstrap

In this section we describe how the popular block-bootstrap of [5] can be used to
construct confidence intervals for autocorrelations. This method does not require
a model specification, but it relies on a choice of the block size b which is often
a difficult task. A good account of block bootstrap is given in [1].

Focusing again on lag one sample autocorrelation of the squared observati-
ons, we proceed as follows: having observed the sample X2

1 , . . . , X2
n, form the

vectors Y2 = [X2
1 , X2

2 ]′,Y3 = [X2
2 , X2

3 ]′, . . . ,Yn = [X2
n−1, X

2
n]′. There are

n − 1 such vectors. Now choose a block length b and compute the number of
blocks k = [(n − 1)/b] + 1 (if (n − 1)/b is an integer we take k = (n − 1)/b).
Choose k blocks with replacement to obtain kb vectors. Choosing the k blocks
corresponds to generating k observations from the uniform distribution on
{2, 3, . . . , n−b+1}. Denote these observations j1, j2, . . . , jk. We thus obtained the
kb vectors Yj1 ,Yj1+1, . . . ,Yj1+b−1, . . . ,Yjk

,Yjk+1, . . . ,Yk1+b−1. If (n − 1)/b is
not an integer, remove the last few vectors to have exactly n − 1 vectors. This
gives us the bootstrap vector process

Y∗
2 = [X∗2

1 , X∗2
2 ]′,Y∗

3 = [X∗2
2 , X∗2

3 ]′, . . . ,Y∗
n = [X∗2

n−1, X
∗2
n ]′.

The bootstrap sample autocovariances are computed according to (1) with the
Xt replaced by the X∗

t defined above. The empirical distribution of ρ̂∗
n,X2(1) is

then an approximation to the distribution of ρ̂n,X2(1). As described in Section
2.1, the quantiles of the empirical distribution of |ρ̂∗

n,X2(1) − ρ̂n,X2(1)| can be
used to construct symmetric confidence intervals.

2.3 Subsampling

The subsampling methodology is described in detail in [7]. [8] investigated sub-
sampling confidence intervals for autocorrelations of linear time series models
like ARMA. We adapt their methodology to the squares of GARCH processes.
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To lighten the notations, denote Ut = X2
t − 1

n

∑n
j=1 X2

j and suppress the
subscript X2 in the following formulas in which use definitions (1) and (2). Set

s2
n(h) =

1
n

n−h∑

j=1

(Uj+h − ρ̂n(h)Uj)
2
, σ̂2

n(h) =
s2

n(h)∑n
j=h U2

j

(4)

and consider the studentized statistic ξ̂n = ρ̂n(h)−ρn(h)
σ̂n(h) . To construct equal-

tailed and symmetric confidence intervals, we would need to know the sampling
distribution of ξ̂n and |ξ̂n|, respectively. We use subsampling to approximate
these distributions: Consider an integer b < n and the n − b + 1 blocks of data
Xt, . . . , Xt+b−1, t = 1, . . . , n − b + 1. From each of these blocks compute ρ̂b,t(h)
and σ̂b,t(h) according to respectively (1), (2) and (4), but replacing the original
data X1, . . . , Xn by Xt, . . . , Xt+b−1. Next, compute the subsampling counterpart

of the studentized statistic ξ̂b,t(h) =
ρ̂b,t(h) − ρ̂n(h)

σ̂b,t(h)
and construct the EDF

Lb(x) = N −1
b

n−b+1∑

t=1

1
{

ξ̂b,t(h) ≤ x
}

, Lb,|·|(x) = N −1
b

n−b+1∑

t=1

1
{

|ξ̂b,t(h)| ≤ x
}

,

with Nb = n−b+1. The empirical quantiles of Lb and Lb,|·| allow us to construct,
respectively, equal-tailed and symmetric confidence intervals. For example, de-
noting by qb,|·|(1 − α) the (1 − α)th quantile of Lb,|·|, a subsampling symmetric
1 − α level confidence interval for ρn(h) is

(
ρ̂n(h) − σ̂n(h)qb,|·|(1 − α), ρ̂n(h) + σ̂n(h)qb,|·|(1 − α)

)
.

3 GARCH Models

We consider the general framework for GARCH models proposed and studied
by [4]; see also references quoted therein. The observations Xt are thus assumed
to satisfy Xt = Ztσt, where Zt is a sequence of independent identically distri-
buted random variables with zero mean and σ2

t = g(Zt−1) + c(Zt−1)σ2
t−1. We

considered only specifications in which the function g(·) is a constant and the Zt

are standard normal. Denoting γci = Eci(Zt), [4] proved that under the above
assumptions a sufficient and necessary condition for the existence of the 2mth
unconditional moment of Xt is γcm = Ecm

t < 1. Thus, the fourth unconditional
moment of Xt exits if and only if γc2 = Ec2

t ∈ [0, 1). We considered the following
three specific models:

1. The standard GARCH(1, 1) model, for which

ct−1 = β + αZ2
t−1, σ2

t = ω + αX2
t−1 + βσ2

t−1. (5)

2. The GJR-GARCH(1, 1) model, see [3], with

ct−1 = β+(α+φI(Zt−1))Z2
t−1, σ2

t = ω+(α+φI(Zt−1))X2
t−1+βσ2

t−1, (6)

where I(Zt−1) = 1 if Zt−1 < 0, and I(Zt−1) = 0 otherwise.
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3. The nonlinear GARCH(1,1) model (NL GARCH(1,1,2), see [2], with

ct−1 = β + α(1 − 2η sign(Zt−1) + η2)Z2
t−1;

σ2
t = ω + α(1 − 2η sign(Zt−1) + η2)X2

t−1 + βσ2
t−1. (7)

Assuming the errors Zt ∼ N(0, 1), the values of γc2 and ρX2(1) can be
computed in a closed form. If we know the model parameters, we can calculate
precisely the population autocorrelation ρX2(1) and the value of γc2.

For each of the three models, we considered five parameter choices, which we
labeled as models 1 through 5. The lag one autocorrelations for these choices
are, respectively, approximately .15, .22, .31, .4, .5. The corresponding values
of γc2 are respectively, approximately .1, .3, .5, .7, .9. To facilitate comparison,
models with the same index have similar values of γc2 and ρX2(1), e.g. standard
GARCH and GJR-GARCH with index 3 both have γc2 ≈ .5 and ρX2(1) ≈ .31.

4 Simulation Results

We investigate the performance of the three methods described in Section 2 by
comparing the empirical coverage probabilities (ECP’s) for the fifteen data ge-
nerating processes (DGP’s) introduced in Section 3. We generated one thousand
replications of each DGP and considered realizations of length n = 100, 250, 500,
1000. We focused on the most commonly used confidence level of 95%. The stan-
dard errors in all tables are about 0.5% and are always smaller than 1%.

4.1 Residual Bootstrap

Table 4.1 presents the ECP of the symmetric confidence interval for the three
GARCH models. To save space the results for the equal-tailed confidence in-
terval are not presented, but are discussed in the following conclusions. Equal-
tailed and symmetric confidence intervals perform equally well for the standard
GARCH and GJR-GARCH. However, for the NL GARCH, the symmetric inter-
val is better than the equal-tailed. It is thus seen that the symmetric confidence
interval is preferred over the equal-tailed. The ECP decreases as the value of
γc2 approaches 1. Recall that γc2 < 1 is required for the population autocovari-
ances to exist. When γc2 ≈ 0.9, at least 250 observations are needed to ensure
reasonable ECP for the standard GARCH and the GJR-GARCH. For the NL
GARCH, even series length of 1000, does not produce satisfactory results. For
the standard GARCH and the GJR-GARCH increasing the sample size from
500 to 1000 does not improve the ECP. For the NL GARCH a sample size of
1000 observations is needed, except when γc2 ≤ 0.3.

The somewhat worse performance of the residual bootstrap method for the
GJR-GARCH which becomes markedly worse for the NL GARCH can be at-
tributed to identification problems, which are particularly acute for the NL
GARCH: for the latter model biases of parameter estimates are very large when
η in equation (7) is large. Large η corresponds to large γc2, we omit the details
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Table 1. ECP of symmetric confidence intervals constructed using residual bootstrap.

n e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%)

STD GARCH 1 2 3 4 5
100 99.6 85.3 86.0 80.4 77.4
250 92.9 91.3 92.1 89.4 84.4
500 93.4 93.4 94.1 93.7 92.7

1000 95.1 96.8 97.6 97.6 94.4
GJR GARCH 1 2 3 4 5

100 97.7 94.8 92.0 89.5 81.5
250 96.2 96.6 97.0 96.4 92.3
500 98.3 99.2 98.9 99.1 96.5

1000 99.0 99.4 99.6 99.8 98.8
NL GARCH 1 2 3 4 5

100 95.5 83.8 79.8 74.7 66.0
250 91.7 87.3 84.3 81.0 73.6
500 91.7 93.1 88.5 82.1 77.3

1000 96.4 93.3 92.9 87.0 81.0

Model

E
m

pi
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al
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ov
er

ag
e 

pr
ob

ab
ili

ty

0%
70

%
80

%
90

%
95

%
10

0%

GJR−GARCH(1,1) NLGARCH(1,1,2)

1 2 3 4 5 1 2 3 4 5

Correct specification
Misspecification

n =  500 

Fig. 1. Comparison of ECP’s for symmetric residual bootstrap confidence intervals
based on standard GARCH and a correct specification. The nominal coverage of 95%
is marked by the solid horizontal line. The series length is n = 500.

of the calculation. On the other hand, for the standard GARCH, while they still
do exist, the identification problems are much less severe.

Figure 1 shows that estimating the standard GARCH model on all three
DGP’s might lead to improvements in ECP’s, for symmetric confidence intervals
and series of length 500. The results for other series lengths look very much the
same and are therefore not presented. The residual bootstrap method works best
if symmetric confidence intervals are used and the standard GARCH model is
estimated. Thus, in our context, misspecifying a model improves the performance
of the procedure.
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Table 2. ECP of symmetric confidence intervals based on the block bootstrap method
for the five parameter choices in the GJR-GARCH model.

Model 1 2 3 4 5

n b e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%) e.c.p. (%)

500 3 87.0 82.0 78.4 65.5 61.4
5 89.1 83.8 73.4 63.0 58.5

10 87.9 81.8 71.4 60.6 51.9
15 84.5 78.7 71.8 63.8 52.7
30 85.6 79.0 69.6 61.3 50.0

1000 5 87.7 84.4 75.2 67.9 59.6
10 88.6 85.1 70.8 61.0 52.6
15 89.7 83.0 72.7 63.6 53.3
30 87.8 80.9 72.7 59.7 51.2

4.2 Block Bootstrap and Subsampling

The implementation of both methods requires a choice of the block length b.
We then have a multitude of cases to explore: 15 models, 2 types of confidence
intervals (equal-tailed and symmetric), 4 sample sizes and several choices of b.
Since we used 10 values of b in our experiments, we obtained 1,200 ECP’s. For
space constraints, we describe them and present some typical values in Table 2.

The empirical coverage probabilities are generally too low for all choices
of n and b and are in the range of 80% to 90% for γc2 ≤ 0.3 and go down
to slightly above 50% for γc2 ≈ 0.9. Irrespective of the value of γc2, choosing
smaller b gives higher coverage. However, extremely small b, like 1 or 2, do not
work well. We recommend to use b = 3 or b = 5. The dependence on b is
however not substantial, which is very desirable, as in many other applications
choosing optimal b is very difficult. There is not much difference of ECPs between
equal-tailed and symmetric confidence intervals. The block bootstrap confidence
intervals are generally too short and given that the QML estimates underestimate
the true value of the autocorrelation, they are shifted too much to the left what
causes the under-coverage.

We observed that the subsampling method is very sensitive to the choice of b.
Symmetric confidence intervals have a much better ECP than the equal-tailed.
By choosing very short b’s, such as 3 or 6, we can obtain ECP’s that are quite
close to 95% for models with γc2 < 0.6 and fair coverage for models with greater
values of γc2. Such choice of b is somewhat surprising, as autocovariances are
then computed from very short sub-series. The ECP’s are generally too low for
equal-tailed confidence intervals and are typically in the range of 50-70%. As
γc2 approaches 1, the empirical coverage decrease and in some cases may be
as low as 10%. Complete tables for ECP’s are available at the following site:
www.gillesteyssiere.net/ktz iccs2004.
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Fig. 2. Comparison of ECP’s for symmetric confidence intervals. The nominal cover-
age 95% is marked by solid horizontal line. The series length is n = 1000. For block
bootstrap, b = 5, for subsampling b = 3.

4.3 Conclusions and Practical Recommendations

The best method is residual bootstrap which assumes a standard GARCH(1,1)
model. The block bootstrap and subsampling methods do not perform well when
γc2 approaches 1. Moreover, these methods require a choice of the block size b.
The latter problem is particularly acute for the subsampling method. Except for
the NL GARCH, the residual bootstrap method with correct model specification
performs reasonably well even for γc2 close to 1. This is probably due to the fact
that large values for γc2 correspond to large values of model parameters which
are easier to estimate than small values yielding residuals which are close to the
unobservable errors. A graphical comparison of symmetric confidence intervals
based on the three methods for n = 1000 is given below:
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