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Organization of the presentation

• Change-point in the GARCH process:

– Change in the parameters of the process,

– Change in the distribution of the innovations.

• Tests based on the empirical process of squared residuals,

• Test based on the Generalized likelihood ratio principle,

• Competing tests,

• Application to series of financial returns.
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Framework: GARCH(p,q) processes

Rt = σtεt, E(εt) = 0, Var(εt) = 1,

σ2
t = ω +

p
∑

j=1

βjσ
2
t−j +

q
∑

j=1

αjε
2
t−j ,

Non-homogeneous GARCH(p, q) process:

Change in the parameters at time t0

σ2
t = ω +

p
∑

j=1

βjσ
2
t−j +

q
∑

j=1

αjε
2
t−j , t = 1, . . . , t0,

σ2
t = ω∗ +

p
∑

j=1

β∗
j σ2

t−j +

q
∑

j=1

α∗
jε

2
t−j , t = t0 + 1, . . . , T

ω 6= ω∗ or αj 6= α∗
j or βj 6= β∗

j , for some j.
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Non-homogeneous GARCH(p, q) process:

Change in the distribution of the innovations at time t0

Rt = σtεt,

σ2
t = ω +

p
∑

j=1

βjσ
2
t−j +

q
∑

j=1

αjε
2
t−j ,

εt ∼ D1(0, 1) t = 1, . . . , t0,

εt ∼ D2(0, 1) t = t0 + 1, . . . , T.

Remark: We consider here the case of a single change–point.
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Case studied

We consider a GARCH(1,1) process, i.e.,

Rt = σtεt, E(εt) = 0, Var(εt) = 1,

σ2
t = ω + βσ2

t−1 + αε2
t−1.

We are interested in the change in the unconditional

variance of the process, i.e., ω/(1 − β − α), since:

• the magnitude of the change in this unconditional

variance, implied by the changes of the parameters

α, β, ω, affects the power of the tests considered here,

• the degree of long range dependence in asset price

volatilities might be the consequence of a change in the

unconditional variance of the volatility process; the

intensity of strong dependence positively depends on the

magnitude of this change (see the works by Mikosch and

Stărică).



'

&

$

%

Tests based on the sequential empirical process of

squared residuals

Sequential empirical process:

K̂T (s, t) = T−1/2
∑

1≤i≤[Ts]

[

I
{

ε̂2
i ≤ t

}

− F (t)
]

, 0 < s ≤ 1.

As s increases from 0 to 1, this process “looks” at all

potential change–points.

Proposed tests are based on the process:

K̂T (s, t) =
√

T
[Ts]

T

(

1 − [Ts]

T

)

(

F̂[Ts](t) − F̂ ∗
T−[Ts](t)

)

,

where F̂[Ts](t) =
1

[Ts]

∑

1≤i≤[Ts]

I
{

ε̂2
i ≤ t

}

F ∗
T−[Ts](t) is defined analogously using the residuals with

indexes larger than [Ts].
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Tests based on the sequential empirical process of

squared residuals (cont.)

Define

K̂(k, t) =
√

T
k

T

(

1 − k

T

)

∣

∣

∣
F̂k(t) − F̂ ∗

k (t)
∣

∣

∣
,

where F̂k(t) =
1

k
#{i ≤ k : ε̂2

i ≤ t},

F̂ ∗
k (t) =

1

T − k
#{i > k : ε̂2

i ≤ t}.
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Cramér–von Mises type statistic

From the results in Horváth et al. (2001), for large T the

Cramér – von Mises statistic defined as

B̂ :=

∫ 1

0

{

1

T

T
∑

i=1

[K̂([Ts], ε̂2
i )]

2

}

ds

has approximately the following asymptotic distribution:

B̂ ∼ B :=

∫ 1

0

∫ 1

0

K2(s, u)duds,

where K is the “tied-down” Kiefer process. The critical

values for B can be derived from Blum, Kiefer and

Rosenblatt (1961).

α q(α) α q(α)

0.1 0.04694 0.005 0.09960

0.05 0.05839 0.001 0.12976

0.01 0.08685 0.0005 0.14290

Table 1: Upper quantiles of B; P (B > q(α)) = α.
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Kolmogorov-Smirnov type statistic

M̂T = sup
0≤t≤∞

max
1≤k≤T

|K̂T (k, t)| = max
1≤k≤T

max
1≤j≤T

| K̂T (k, ε̂2
j ) |

Asymptotic distribution of M̂T is the same as for Picard’s

(1985) generalized Kolmogorov-Smirnov statistic.

α c α c

0.10 0.715 0.02 0.823

0.05 0.772 0.01 0.874

Table 2: Asymptotic critical values for the Kolmogorov-

Smirnov statistic MT P (M̂T > c) ∼ α. Based on Picard

(1985).
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Generalized Likelihood Ratio tests

Under the null hypothesis, the Data Generating Process

(DGP) is:

Rt = σtεt, εt ∼ N(0, σ2
t ), σ2

t = ω + βσ2
t−1 + αε2

t−1,

Alternative hypothesis: for t > t0, the DGP is

Rt = σtεt, εt ∼ N(0, σ2
t ), σ2

t = ω∗ + β∗σ2
t−1 + α∗ε2

t−1,

where ω∗ 6= ω, or β∗ 6= β, or α∗ 6= α.

The GLR statistic is defined by:

Λt0 =
maximum likelihood under null

maximum likelihood if change at t0
.
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GLR statistics (cont. 1)

Notations

• ω̂, α̂, β̂: the estimates based on R1, . . . , RT ,

• ω̃, α̃, β̃: the estimates based on R1, . . . , Rt0 ,

• ω̄, ᾱ, β̄: the estimates based on Rt0+1, . . . , RT .

• Define σ̂2
t = ω̂ + β̂σ̂2

t−1 + α̂ε̂2
t−1,

• Define (σ̄2
t , σ̃2

t ) analogously to σ̂2
t .

Since we are considering a Gaussian likelihood function, we

have:

−2 ln Λt0 = −
[

t0
∑

t=1

(ln σ̃2
t − ln σ̂2

t ) +
T

∑

t=t0+1

(ln σ̄2
t − ln σ̂2

t )

]

+

T
∑

t=1

ε̂2
t

σ̂2
t

−
t0

∑

t=1

ε̂2
t

σ̃2
t

−
T

∑

t=t0+1

ε̂2
t

σ̄2
t
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GLR statistics (cont. 2)

Since the change–point time t0 is unknown, we consider:

Λ∗
T = max

1≤k≤T
−2 lnΛk

Even if the observations are iid, the statistic Λ∗
T exhibits a

very interesting behavior:

• it does not converge to a limiting distribution for any

normalizing sequence. Instead it satisfies an Erdös type

limit theorem with an exponential type extreme value

distribution as the limit,

• From Theorem 1.3.1 of Csörgő and Horváth (1997) that

for iid observations with estimated d parameters, the

asymptotic size α test rejects the null hypothesis of no

change in parameters if Λ∗
T > cn(α) where

cn(α) =
[Dd(log n) − log[− log(1 − α)] + log 2]2

2 log log n
,

with Dd(x) = 2 log x +
d

2
log log x − log Γ

(

d

2

)

.

Remark: The rate of convergence to this limit is rather slow

and the asymptotic critical values typically overestimate the

finite sample critical values obtained through simulation; see

Gombay and Horváth (1996).
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GLR statistics (cont. 3)

Weighted likelihood ratio statistic based on the process

{

τ(1 − τ)(−2 lnΛ[Tτ ]), 0 < τ < 1
}

If observations are independent with a density depending on

b parameters, then the above process can be approximated

by
{

∑b
i=1 B2

i (τ), 0 < τ < 1
}

, where Bi(·), i = 1, . . . , b are

independent Brownian bridges on the unit interval [0, 1].

Under the null hypothesis of constant parameters:

∆∗
T := T−3

T−1
∑

k=1

k(T − k)(−2 lnΛk)
d→

∫ 1

0

b
∑

i=1

B2
i (τ)dτ.

The critical values for ∆∗
T are derived from Kiefer (1959)

α d = 1 d = 2 d = 3 d = 4 d = 5

0.1 0.34730 0.60704 0.84116 1.06311 1.27748

0.05 0.46136 0.74752 1.00018 1.23730 1.46466

0.01 0.74346 1.07366 1.35861 1.62263 1.87215

Table 3: Upper quantiles c defined by P (
∫ 1

0

∑b
i=1 B2

i (t)dt >

c) = α.
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Bootstrap based inference:

Since we do not known whether the previous results hold for

process with weak dependence like GARCH processes, we

resort to bootstrap based inference.

Choice for the optimal number of bootstrap by data driven

procedure.

Let τ̂ be the statistic of interest:

1. Compute τ̂ , set B = B′ = 99, and the statistics τ∗
j ,

j = 1, . . . , B.

2. Compute the estimated bootstrap P -value P̂ ∗(τ̂) based

on the B bootstrap samples:

P̂ ∗(τ̂) =
1

B

B
∑

i=1

I[T ∗
Ti

> τ̂ ].

Depending whether P̂ ∗(τ̂) < α or P̂ ∗(τ̂) > α, test, at the

level β = 0.001, either the hypothesis that P ∗(τ̂) ≥ α or

P ∗(τ̂) ≤ α. If the hypothesis is rejected, then stop, else

go to step 3.

3. Set B = 2B′ + 1. If B is too large, e.g.,

B > Bmax = 12, 799 then stop, else calculate τ∗
j for a

further B′ + 1 bootstrap samples, set B′ = B and return

to step 2.
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Competing tests:

The tests considered here are “posteriori” tests, i.e., are

applied when the whole series R1, . . . , RT is observed.

Alternative class of tests: “online” tests:

• We observe the series R1, . . . , Rm, with m << T . On

this interval, the process is assumed homogeneous, i.e.,

its parameters are constant.

• We test for the occurence of a recent change at time

t > m.

See Mikosch and Stărică (1999), Berkes, Gombay, Horváth

and Kokoszka (2002).

We also considered test for a single change-point.

These tests can be adapted to situations of multiple

change-points by using the binary segmentation procedure:

• A: Test for the presence of a single change point,

• B: Split the series in two at the detected change-point,

• C: Repeat procedure from A on the two segments, until

no further change point is found.
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Monte Carlo experiment: Size of the tests

We consider three DGP which satisfy the null hypothesis:

DGP 0a ARCH(1):

ω = 0.1, β = 0, α = 0.5.

DGP 0b GARCH(1,1):

ω = 0.1, β = 0.3, α = 0.3.

DGP 0c ARCH(1)

ω = 0.1, β = 0, α = 0.8.

For DGP 0c, the fourth moment does not exist,
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Monte Carlo experiment: Power of the tests.

A) changes in parameters

DGP 1 GARCH (1,1) process with change–point in the

middle of the sample (large changes in parameters, large

change in unconditional variance):

ω = 0.1, β = 0.3, α = 0.3, t = 1, . . . , [T/2]

(σ2 = 0.25),

ω = 0.15, β = 0.65, α = 0.25, t = [T/2] + 1, . . . , T

(σ2 = 1.5).

DGP 2 GARCH(1,1) process with change–point in the

middle of the sample (large changes in parameters, small

change in unconditional variance):

ω = 0.1, β = 0.3, α = 0.3, t = 1, . . . , [T/2]

(σ2 = 0.25),

ω = 0.125, β = 0.6, α = 0.1, t = [T/2] + 1, . . . , T

(σ2 = 0.4667).

DGP 3 GARCH(1,1) process with change–point, such that

the unconditional variance remains unchanged (σ2 = 0.25)

ω = 0.1, β = 0.3, α = 0.3, t = 1, . . . , [T/2],

ω = 0.15, β = 0.25, α = 0.15, t = [T/2] + 1, . . . , T
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Monte Carlo experiment: Power of the tests.

A) changes in parameters (cont.)

DGP 4 Smooth transition GARCH(1,1) process,

σ2
t = ω + ω∗F (t, [T/2]) + (β + β∗F (t, [T/2]))σ2

t−1

+(α + α∗F (t, [T/2]))y2
t−1,

with

ω = 0.1, β = 0.3, α = 0.3,

ω∗ = 0.05, β∗ = 0.35, α∗ = −0.05, γ = 0.05,

• F (t, k) = (1 + exp(−γ(t − k)))−1,

• γ strictly positive parameter controlling the smoothness

of the transition.

If γ is large, this DGP reduces to DGP 1.

With γ = 0.05, i.e., the transition between the two processes

is smooth.

This DGP is of interest for economic variables, the transition

of which is smooth, see e.g., Hagerud (1997),

Gonzalez-Rivera (1998) and Teräsvirta (1998).
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Monte Carlo experiment: Power of the test.

B) change-point near one extreme of the sample.

DGP 5 GARCH(1,1): similar to DGP 1, except that the

change–point occurs in the first third of the sample:

ω = 0.1, β = 0.3, α = 0.3, t = 1, . . . , [T/3]

ω = 0.15, β = 0.65, α = 0.25 t = [T/3] + 1, . . . , T

DGP 6 GARCH(1,1): similar to DGP 1, except that the

change–point occurs in the first sixth of the sample:

ω = 0.1, β = 0.3, α = 0.3 t = 1, . . . , [T/6]

ω = 0.15, β = 0.65, α = 0.25 t = [T/6] + 1, . . . , T
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Monte Carlo experiment: Power of the test.

C) changes in the innovations

For all cases: GARCH(1,1) with constant parameters but

with a change in the distribution of the innovations in the

middle of the sample: the parameters are the same as in

DGP 0b, but the distribution of the innovations εt changes

as follows:

DGP 7

εt ∼ N(0, 1), t = 1, . . . , [T/2],

εt ∼ t(7), t = [T/2] + 1, . . . , T

DGP 8 the innovations εt for the second half of the sample

follow a centralized and standardized χ2(5) distribution:

εt ∼ N(0, 1), t = 1, . . . , [T/2],

εt ∼ χ2(5), t = [T/2] + 1, . . . , T

DGP 9 the innovations εt for the second half of the sample

follow a Laplace (two–sided exponential) distribution:

εt ∼ N(0, 1), t = 1, . . . , [T/2],

εt ∼ Lap(2−1/2), t = [T/2] + 1, . . . , T
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Conclusions from Monte Carlo results

• GLR tests appear more powerful than tests based on the

empirical process of residuals, i.e., CVM and KS tests,

except for the case of the change in distribution from the

Normal to the Laplacian, which is strongly leptokurtic:

the residuals have then a different distribution after and

before the change,

• Power of the test increases with the magnitude of the

changes in the unconditional variance of the process,

• Asymptotic test Λ has incorrect size and its power is

smaller than the power of the bootstrap test Λ,

• the CVM and the Weighted Likelihood Ratio ∆

asymptotic tests have the correct size,

• The WLR test ∆ is recommended for single change

point analysis.
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Size-Power curves (Wilk and Gnanadesikan, 1968)
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Figure 1: Size–Power Curves. DGP 1.300 Observations
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Figure 2: Size–Power Curves. DGP 2.300 Observations
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Figure 3: Size–Power Curves. DGP 3.300 Observations
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Figure 4: Size–Power Curves. DGP 4.300 Observations
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Figure 5: Size–Power Curves. DGP 5.300 Observations



'

&

$

%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

DGP 6 Lambda 
DGP 6 CVM 

DGP 6 Delta 
DGP 6 KS 

Figure 6: Size–Power Curves. DGP 6.300 Observations
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Figure 7: Size–Power Curves. DGP 7.300 Observations
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Figure 8: Size–Power Curves. DGP 8.300 Observations
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Figure 9: Size–Power Curves. DGP 9.300 Observations
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Application to financial time series:

We consider financial time series: FX rates, indices, returns

on equities in the technological and the banking sector:

Evidence for the presence of changes in the volatility

processes can be deduced by a semiparametric analysis of

the long-range dependence properties of the series of

absolute returns |Rt|.
Comparison between the estimated scaling parameter

obtained with

• the local Whittle estimator; see Robinson (1995),

• the estimator based on the wavelets; see Abry, Flandrin,

Taqqu, Veitch (2002),

Both estimators are based on the assumption that the

spectrum of a long–memory process has the form:

f(λ) ∼ cfλ−ϑ, λ → 0+,

Unlike the local Whittle estimator, the wavelet estimator of

the scaling parameter is unaffected by changes in the mean

of the series,
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Veitch and Abry (1999): estimator of ϑ, which uses the

independence properties of the wavelet coefficients dx(j, k)

for fractional Gaussian noise and related LRD processes.

The wavelets coefficients are defined as

dx(j, k) = 〈x, ψj,k〉,

where ψj,k is a family of wavelet basis functions
{

ψj,k = 2−j/2ψ0(2
−jt − k

}

, j = 1, . . . , J are the octaves or

scales, k ∈ Z, ψ0 is the mother wavelet, which has N zero

moments, with N ≥ 1, i.e.,
∫

tkψ0(t)dt ≡ 0, k = 0, . . . ,N − 1.

By construction, the family of wavelet basis functions is scale

invariant:

Edx(j, ·)2 = 2jϑcfC, with C =

∫

|λ|−ϑ|Ψ0(λ)|2dλ,

where |Ψ0(λ)| is the Fourier transform of the mother wavelet

ψ0.

The scaling parameter ϑ is estimated from the slope of the

linear regression

log2

(

Edx(j, ·)2
)

= jϑ + log2(cfC).

We use the Daubechies wavelets, with N = 4.
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The wavelet estimator has approximately the following

asymptotic distribution

√
n(ϑ̂ − ϑ) ∼ N

(

0,
1

ln2(2)21−j1

)

,

where j1 is the lowest octave, the LRD behavior being

captured by the octaves larger than j1.

Local Whittle estimator: replace the expression of the

spectrum by its approximation in the Whittle estimator:

ϑ̂ = arg min
ϑ







ln





1

m

m
∑

j=1

I(λj)

λ−ϑ
j



 − ϑ

m

m
∑

j=1

ln(λj)







,

I(λj) is the periodogram evaluated on a set of m Fourier

frequencies λj = πj/T, j = 1, . . . , m ≪ [T/2],

Bandwidth parameter satisfies: 1/m + m/T → 0 as T → ∞.

Under appropriate conditions, i.e;, differentiability of the

spectrum near the zero frequency and existence of a moving

average representation, the estimator has the following

asymptotic distribution

√
m(ϑ̂ − ϑ)

d→ N(0, 1),
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Estimates of the scaling parameter ϑ. Standard errors in

parentheses.

Local Whittle Wavelet

GBP–USD 0.5916 (0.1387) 0.1260 (0.0919)

S&P 500 0.6048 (0.0619) 0.1451 (0.0919)

FTSE 100 0.6378 (0.1222) 0.1036 (0.0919)

NASDAQ 0.5875 (0.0816) 0.0927 (0.0919)

IBM 0.3628 (0.1104) 0.1770 (0.0919)

Dell 0.7470 (0.1387) 0.0200 (0.0919)

Oracle 0.6012 (0.1139) 0.1021 (0.0919)

SAP 0.5017 (0.1231) 0.3747 (0.0919)

Microsoft 0.6407 (0.1291) 0.1528 (0.0919)

BNP 0.3585 (0.1260) 0.1941 (0.0919)

BoA 0.2230 (0.0814) 0.1862 (0.0919)

Citygroup 0.6224 (0.1240) 0.2047 (0.0919)

HSBC 0.3122 (0.0962) 0.1980 (0.0919)

Lloyds 0.7470 (0.1387) 0.1366 (0.0919)

JPM 0.5174 (0.1104) 0.1332 (0.0919)
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• Estimated scaling parameter with the wavelet estimator

is lower than the one obtained with the local Whittle

estimator.

• This indicates the presence of change-points in volatility

that “fool” the local Whittle estimator,

• We worked with the series of log returns

Rt = 100 ln(Pt/Pt−1), where Pt denotes the asset price

at time t.

• We estimated the following GARCH(1,1) model on the

series {Rt}:

Rt = µ + ψεt−1 + εt, εt ∼ N(0, σ2
t ),

σ2
t = ω + βσ2

t−1 + αε2
t−1.

• Estimation results confirm that the tests are able to

detect the presence of change-points in the volatility

processes


