Long-Range Dependence and Multiple Change-Points in Multivariate Time Series

Gilles Teyssière stats@gillesteyssiere.net joint works with Marc Lavielle (University Paris-Sud Orsay)

Göteborg University CES, University Paris 1 Panthéon Sorbonne

Graz, Statistical Models for Financial Data II, May 2007

• Extend previous works on multiple change-points detection for univariate time series (Lavielle 1999, Lavielle and Teyssière 2005)

< - 10 - ▶

∃ ≥ ≥

1

- Extend previous works on multiple change-points detection for univariate time series (Lavielle 1999, Lavielle and Teyssière 2005)
- These methods are defined for both weakly dependent and long-range dependent data

- E - E

1

- Extend previous works on multiple change-points detection for univariate time series (Lavielle 1999, Lavielle and Teyssière 2005)
- These methods are defined for both weakly dependent and long-range dependent data
- Consider a multivariate framework (direct extension since using a Gaussian contrast estimator)

< ∃ ▶

- Extend previous works on multiple change-points detection for univariate time series (Lavielle 1999, Lavielle and Teyssière 2005)
- These methods are defined for both weakly dependent and long-range dependent data
- Consider a multivariate framework (direct extension since using a Gaussian contrast estimator)
- Present an adaptive method for finding the number of change-points, (i.e., the dimension of the model)

- Extend previous works on multiple change-points detection for univariate time series (Lavielle 1999, Lavielle and Teyssière 2005)
- These methods are defined for both weakly dependent and long-range dependent data
- Consider a multivariate framework (direct extension since using a Gaussian contrast estimator)
- Present an adaptive method for finding the number of change-points, (i.e., the dimension of the model)

- 4 回下 4 三下 4 三下

1

Remark

This work is the other side of the coin of the previous paper by Surgailis *et al.* (2008).

Standard univariate approach

In the univariate case : standard procedures for detecting single changes in variance:

- Change in variance for iid observations: Inclan and Tiao (1994)
- \bullet Change in variance for weakly dependent observations, $\mathsf{ARCH}(\infty)$: Kokoszka and Leipus (1999)

- 4 E M 4 E M

1

Standard univariate approach

In the univariate case : standard procedures for detecting single changes in variance:

- Change in variance for iid observations: Inclan and Tiao (1994)
- \bullet Change in variance for weakly dependent observations, $\mathsf{ARCH}(\infty)$: Kokoszka and Leipus (1999)

・回り くまり くまり

Remark

• Assumption of single change-point not realistic for financial time series

Standard univariate approach

In the univariate case : standard procedures for detecting single changes in variance:

- Change in variance for iid observations: Inclan and Tiao (1994)
- \bullet Change in variance for weakly dependent observations, $\mathsf{ARCH}(\infty)$: Kokoszka and Leipus (1999)

・回り くまり くまり

Remark

- Assumption of single change-point not realistic for financial time series
- How to deal with the case of multiple change points?

The multiple change-point case: the local approach

Binary segmentation algorithm (Vostrikova, 1981)

• Apply the testing procedure on the whole sample

-

∃ ≥ ≥

The multiple change-point case: the local approach

Binary segmentation algorithm (Vostrikova, 1981)

- Apply the testing procedure on the whole sample
- If a change point is detected, divide the series in two

The multiple change-point case: the local approach

Binary segmentation algorithm (Vostrikova, 1981)

- Apply the testing procedure on the whole sample
- If a change point is detected, divide the series in two
- Apply recursively the single change-point procedure on these segments until no further change-point is detected.

The multiple change-point case: the local approach

Binary segmentation algorithm (Vostrikova, 1981)

- Apply the testing procedure on the whole sample
- If a change point is detected, divide the series in two
- Apply recursively the single change-point procedure on these segments until no further change-point is detected.

3 ×

Remark

This is a local detection algorithm

Empirical example: the FTSE 100 index

Figure: Log of returns on the FTSE 100 index $r_t = \log(P_t/P_{t-1})$ (1986–2002)

Is the binary segmentation procedure reasonable?

- Top: Binary segmentation procedure
- Bottom: Global (adaptive) method presented later

Is the binary segmentation procedure reasonable?

- Top: Binary segmentation procedure
- Bottom: Global (adaptive) method presented later
- There is a difference in the resolution

Is the binary segmentation procedure reasonable?

- Top: Binary segmentation procedure
- Bottom: Global (adaptive) method presented later
- There is a difference in the resolution
- Which dimension is the right one ?

Finding the dimension of the model

• Trade off between high resolution and parsimonious representation of the process

< 17 →

- 4 E b

- (E) (

3

Sar

Finding the dimension of the model

- Trade off between high resolution and parsimonious representation of the process
- We wish to capture the "main" features of the model

-

Sar

< - 10 - ▶

B b d B b

Finding the dimension of the model

- Trade off between high resolution and parsimonious representation of the process
- We wish to capture the "main" features of the model
- Method used: penalized likelihood function

B b d B b

1

Sar

Finding the dimension of the model

- Trade off between high resolution and parsimonious representation of the process
- We wish to capture the "main" features of the model
- Method used: penalized likelihood function
- How to choose the penalty parameter ?

B N 4 B N

1

Multivariate change-points detection: Motivation Empirical examples: the FTSE 100 and S&P 500 indices (1986-2002)

Adaptive detection of multiple change-points in variance (univariate case)

- Top : log returns on FTSE 100
- Bottom : log returns on S&P 500

Remark

Change-point times in the two series look very similar

Gilles Teyssière. Statistical Models for Financial Data II, Graz, May 2007 Long-range dependence

Long-range dependence and multiple change-points

Global detection method

- *m*-dimensional process $\{\mathbf{Y}_t = (Y_{1,t}, \dots, Y_{m,t})'\}$ changing abruptly
- Process characterized by a parameter $heta\in\Theta$ constant between two changes
- Let K be an integer and $\tau = \{\tau_1, \tau_2, \dots, \tau_{K-1}\}$ be an ordered sequence of integers verifying $0 < \tau_1 < \tau_2 < \dots < \tau_{K-1} < T$.
- For all $1 \leq k \leq K$, define a contrast function $U(\mathbf{Y}_{\tau_{k-1}+1}, \dots, \mathbf{Y}_{\tau_k}; \theta)$ for estimating the parameter on the k^{th} segment
- Minimum contrast estimator of $\hat{\theta}(\mathbf{Y}_{\tau_{k-1}+1}, \dots, \mathbf{Y}_{\tau_k})$ on the k^{th} segment of τ , is defined as the solution to the minimization problem:

$$U\left(\mathbf{Y}_{\tau_{k-1}+1},\ldots,\mathbf{Y}_{\tau_{k}};\hat{\theta}(\mathbf{Y}_{\tau_{k-1}+1},\ldots,\mathbf{Y}_{\tau_{k}})\right) \leq U(\mathbf{Y}_{\tau_{k-1}+1},\ldots,\mathbf{Y}_{\tau_{k}};\theta)$$

$$\forall \theta \in \Theta.$$

Contrast function Selecting the dimension of the model Adaptive choice for the penalty parameter

イロト イポト イラト イラト

1

Global method: Contrast function I

• For all $1 \leq k \leq K$, define G as follows:

$$G(\mathbf{Y}_{\tau_{k-1}+1},\ldots,\mathbf{Y}_{\tau_k})=U\left(\mathbf{Y}_{\tau_{k-1}+1},\ldots,\mathbf{Y}_{\tau_k};\hat{\theta}(\mathbf{Y}_{\tau_{k-1}+1},\ldots,\mathbf{Y}_{\tau_k})\right).$$

• Define the contrast function $J({m au},{f Y})$:

.

$$\mathcal{J}(au, \mathbf{Y}) = rac{1}{T} \sum_{k=1}^{K} G(\mathbf{Y}_{ au_{k-1}+1}, \dots, \mathbf{Y}_{ au_{k}}),$$

with $\tau_0 = 0$ et $\tau_K = T$.

- 4 個 ト 4 ヨ ト 4 ヨ ト

Global method: Contrast function II

- We consider changes in the covariance matrix of $\{\mathbf{Y}_t\}$
- Assume that there exists
 - an integer K^* ,
 - a sequence $\boldsymbol{\tau}^{\star} = \{\tau_1^{\star}, \tau_2^{\star}, \dots, \tau_{K^{\star}}^{\star}\}$ with $\tau_0^{\star} = 0 < \tau_1^{\star} < \dots < \tau_{K^{\star}-1}^{\star} < \tau_{K^{\star}}^{\star} = T$
 - K^* $(m \times m)$ covariance matrices $\Sigma_1, \Sigma_2, \dots, \Sigma_{K^*}$ such that $\operatorname{Cov} \mathbf{Y}_t = \mathbb{E}(\mathbf{Y}_t - \mathbb{E}\mathbf{Y}_t)(\mathbf{Y}_t - \mathbb{E}\mathbf{Y}_t)' = \mathbf{\Sigma}_k$ for $\tau_{k-1}^* + 1 \leq t \leq \tau_k^*$.
- We consider the case of changes in the covariance matrix (the mean of the process is assumed constant)
- There exist a *m*-dimensional vector μ such that $\mathbb{E}\mathbf{Y}_t = \mu$ pour t = 1, 2, ..., T. Further, $\mathbf{\Sigma}_k \neq \mathbf{\Sigma}_{k+1}$ for $1 \leq k \leq K^* - 1$

・ 同下 ・ ヨト ・ ヨト

1

Global method: Contrast function III

- Change in the covariance matrix constant mean (volatility models)
- Gaussian contrast

$$J(\boldsymbol{\tau}, \mathbf{Y}) = rac{1}{T} \sum_{k=1}^{K} n_k \log |\widehat{\mathbf{\Sigma}}_{\tau_k}|,$$

- $n_k = \tau_k \tau_{k-1}$ is the length of the segment k
- $\widehat{\Sigma}_{\tau_k}$: $(m \times m)$ empirical covariance matrix evaluated on the segment k:

$$\widehat{\boldsymbol{\Sigma}}_{\tau_k} = \frac{1}{n_k} \sum_{t=\tau_{k-1}+1}^{\tau_k} (\mathbf{Y}_t - \bar{\mathbf{Y}}) (\mathbf{Y}_t - \bar{\mathbf{Y}})', \quad \bar{\mathbf{Y}} = T^{-1} \sum_{t=1}^T \mathbf{Y}_t$$

Contrast function Selecting the dimension of the model Adaptive choice for the penalty parameter

< - 10 - ▶

- 4 E M 4 E M

1

Sar

Global method: Contrast function IV

- Univariate framework by Lavielle
- Similar rates of convergence
- Original adaptive method for determining the penalty parameter

イロト 不得下 イヨト イヨト

3

Sac

Global method: Contrast function V

Asymptotic results for the minimum contrast estimator of au^{\star} are obtained in the following framework:

A1

For all $1 \leq i \leq m$ and $1 \leq t \leq T$, define $\eta_{t,i} = Y_{t,i} - \mathbb{E}Y_{t,i}$. There exists C > 0 and $1 \leq h < 2$ such that for any $u \geq 0$ and $s \geq 1$,

$$\mathbb{E}\left(\sum_{t=u+1}^{u+s}\eta_{t,i}\right)^2\leqslant C(\theta)s^h.$$

(A1 is verified with h = 1 for weakly dependent series, and 1 < h < 2 for strongly dependent series.)

A2

There exists a sequence $0 < a_1 < a_2 < \ldots < a_{K^*-1} < a_{K^*} = 1$ such that for any $T \ge 1$ and for any $1 \le k \le K^* - 1$, $\tau_k^* = [Ta_k]$.

イロト イポト イラト イラト

э

Global method: Contrast function VI

When the true number K^* of segments is known, we have the following result concerning the rate of convergence of the minimum contrast estimator of τ^* :

Theorem

Assume that conditions A1-A2 are satisfied. Let $\hat{\tau}_T$ the times that minimize the empirical contrast. Then, the sequence $\{T \| \hat{\tau}_T - \tau^* \|_{\infty}\}$ is uniformly tight in probability:

$$\lim_{T \to \infty} \lim_{\delta \to \infty} \mathbb{P}(\max_{1 \le k \le K^{\star} - 1} |\hat{\tau}_{T,k} - \tau_k^{\star}| > \delta) = 0$$

Remark

K is usually unknown, so that we have to estimate the dimension of the model.

イロト イポト イラト イラト

1

San

Global method: Contrast function VII

Change-point times are estimated by minimizing the penalized contrast function

$$J(\boldsymbol{\tau}, \mathbf{y}) + \beta \operatorname{pen}(\boldsymbol{\tau}) = J(\boldsymbol{\tau}, \mathbf{y}) + \beta_T K$$

where

- $\beta_T K$: penalty term that controls the level of resolution of the segmentation $\tau = \{\tau_1, \tau_2, \dots, \tau_{K-1}\}.$
- If β is a function of T that goes to 0 at an appropriate rate as T goes to infinity, the following theorem states that the estimated number of segments converges in probability to the real number of segments K^{*}

Contrast function Selecting the dimension of the model Adaptive choice for the penalty parameter

- 4 回下 4 回下 4 回下

Global method: Contrast function VIII

Theorem

Let $\{\beta_T\}$ be a positive sequence of real numbers such that

$$\beta_T \xrightarrow[T \to \infty]{} 0 \text{ and } n^{2-h} \beta_T \xrightarrow[T \to \infty]{} \infty$$

Then, under A1-A2, the estimated number of segments $K(\hat{\tau}_T)$, where $\hat{\tau}_T$ is the minimum penalized contrast estimate of τ^* obtained by minimizing $J(\tau, \mathbf{Y}) + \beta_T \text{pen}(\tau)$, converges in probability to K^* .

イロト イポト イラト イラト

1

San

Penalty term

Standard choices for β (over-estimate the number of changes) :

- $\beta_T = \log(T)/T$ (Bayes Information Criteria)
- $\beta_T = 4 \log(T) / T^{1-2d}$ for strongly dependent series,
- How to estimate the unknown d from real data ?
 - Spectral estimators over-estimate d and then artificially increase β .
 - Wavelet methods require large samples (issue of lowest octave selection)
- \bullet Adaptive method: the segmentation does not depend too much on β
- Consider the curve (K, J_K) : we select the dimension K so that J_K ceases to decrease significantly

・回り くまり くまり

1

Adaptive choice for the penalty parameter I

$$egin{array}{rcl} J_{\mathcal{K}}&=&J(\hat{m{ au}}_{\mathcal{K}},{m{Y}}),\ p_{\mathcal{K}}&=& ext{pen}(m{ au}), &orall m{ au}\in\mathcal{T}_{\mathcal{K}}\ \hat{p}_{\mathcal{K}}&=& ext{pen}(\hat{m{ au}}_{\mathcal{K}}). \end{array}$$

For any penalization parameter $\beta > 0$, the solution $\hat{\tau}(\beta)$ minimizes the penalized contrast:

$$egin{array}{rl} \hat{ au}(eta) &=& rg\min_{m{ au}}(J(m{ au},\mathbf{Y})+eta ext{pen}(m{ au})) \ &=& \hat{m{ au}}_{\hat{m{ au}}(m{eta})} \end{array}$$

where

$$\hat{\mathcal{K}}(\beta) = \arg\min_{K \ge 1} \{J_K + \beta p_K\}.$$

Contrast function Selecting the dimension of the model Adaptive choice for the penalty parameter

Adaptive choice for the penalty parameter II

- The solution $\hat{K}(\beta)$ is a piecewise constant function of β .
- More precisely, if $\hat{K}(\beta) = K$,

$$J_{\mathcal{K}} + \beta p_{\mathcal{K}} < \min_{L \neq \mathcal{K}} (J_L + \beta p_L).$$

 \bullet Thus, β satisfies

$$\max_{L>K} \frac{J_K - J_L}{p_L - p_K} < \beta < \min_{L< K} \frac{J_L - J_K}{p_K - p_L}.$$

• Then, there exists a sequence $\{K_1 = 1 < K_2 < \ldots\}$, and a sequence $\{\beta_0 = \infty > \beta_1 > \ldots\}$, with

$$\beta_i = \frac{J_{\mathcal{K}_i} - J_{\mathcal{K}_{i+1}}}{\rho_{\mathcal{K}_{i+1}} - \rho_{\mathcal{K}_i}} , \quad i \ge 1,$$

such that $\hat{K}(\beta) = K_i, \forall \beta \in [\beta_i, \beta_{i-1}).$

• Furthermore, the subset $\{(p_{K_i}, J_{K_i}), i \ge 1\}$ is the convex hull of the set $\{(p_K, J_K), K \ge 1\}$.

Contrast function Selecting the dimension of the model Adaptive choice for the penalty parameter

不得下 不足下 不足下

Adaptive choice for the penalty parameter III

In summary, we propose the following procedure:

- for $K = 1, 2, \ldots, K_{M\!A\!X}$, compute $\hat{\boldsymbol{\tau}}_K$, $J_K = J(\hat{\boldsymbol{\tau}}_K, \mathbf{Y})$ and $p_K = \operatorname{pen}(\hat{\boldsymbol{\tau}}_K)$,
- compute the sequences $\{K_i\}$ and $\{\beta_i\}$, and the lengths $\{I_{K_i}\}$ of the intervals $[\beta_i, \beta_{i-1})$,
- retain the greatest value(s) of K_i such that $I_{K_i} \gg I_{K_j}$, for j > i.

- 4 回下 - 4 回下 - 4 回下

Adaptive choice for the penalty parameter IV

- Method difficult to automatize
- Consider another approach for selecting the dimension of the model
- Method that provides very good results and very easy to automate for practical applications
- Idea of the method: model the decrease of the sequence $\{J_K\}$ when there is no change in the series $\{\mathbf{Y}_t\}$ and look for which value of K this model adjusts the sequence of observed contrast
- Without changes in the variance, the joint distribution of $\{J_K\}$ is very difficult to model analytically
- However, Monte Carlo simulations shows that this sequence decreases as $c_1 K + c_2 K \log(K)$.

Contrast function Selecting the dimension of the model Adaptive choice for the penalty parameter

Adaptive choice for the penalty parameter V

- Ten sequences of contrast functions {J_K} computed from 10 sequences of i.i.d. Gaussian random variables with correlation coefficient ρ = 0.5
- The fit with the function $c_1K + c_2K \log(K)$ is almost perfect $(r^2 > 0.999)$.

(the estimated coefficients \hat{c}_1 et \hat{c}_2 are different for each of these series).

Introduction Contrast function Global detection method Selecting the dimension of the model Applications Adaptive choice for the penalty parameter

Algorithm for the adaptive choice for the penalty parameter

Algorithm

- For i = 1, 2, ...,
 - fit the model

$$J_K = c_1 K + c_2 K \log(K) + e_K,$$

Sac

- (E) - (

to the sequence $\{J_K, K \ge K_i\}$, assuming that $\{e_K\}$ is a sequence of i.i.d. centered Gaussian random variables,

Algorithm for the adaptive choice for the penalty parameter

Algorithm

For
$$i = 1, 2, ...$$

• fit the model

$$J_{K} = c_1 K + c_2 K \log(K) + e_K,$$

to the sequence $\{J_K, K \ge K_i\}$, assuming that $\{e_K\}$ is a sequence of i.i.d. centered Gaussian random variables,

2 evaluate the probability that J_{K_i-1} follows also this model, i.e., estimate the probability

$$\mathcal{P}_{K_i} = P(e_{K_i-1} \ge J_{K_i-1} - \hat{c}_1(K_i-1) + \hat{c}_2(K_i-1)\log(K_i-1)),$$

under this estimated model.

Algorithm for the adaptive choice for the penalty parameter

Algorithm

For
$$i = 1, 2, ...$$

• fit the model

$$J_{\mathcal{K}} = c_1 \mathcal{K} + c_2 \mathcal{K} \log(\mathcal{K}) + e_{\mathcal{K}},$$

to the sequence $\{J_K, K \ge K_i\}$, assuming that $\{e_K\}$ is a sequence of i.i.d. centered Gaussian random variables,

2 evaluate the probability that J_{K_i-1} follows also this model, i.e., estimate the probability

$$\mathcal{P}_{K_i} = P(e_{K_i-1} \ge J_{K_i-1} - \hat{c}_1(K_i-1) + \hat{c}_2(K_i-1)\log(K_i-1)),$$

・ 同下 ・ ヨト ・ ヨト

under this estimated model.

• Then, the estimated number of segments will be the largest value of K_i such that the P-value \mathcal{P}_{K_i} is smaller than a given threshold α . (We set $\alpha = 10^{-7}$ and $K_{MAX} = 20$ in the numerical examples.)

Bivariate series FT100 and S&P 500 Long-memory revisited Monte Carlo experiment

Application to the bivariate series FT100 and S&P 500

 Adaptive detection of the number of change-points

Sac

- Above: FTSE 100
- Below: S&P 500

Bivariate series FT100 and S&P 500 Long-memory revisited Monte Carlo experiment

Application of the adaptive method

• From simulated data (multivariate GARCH processes), it appears that the multivariate framework allows to detect the change-points with more precision than in the univariate case

- From simulated data (multivariate GARCH processes), it appears that the multivariate framework allows to detect the change-points with more precision than in the univariate case
- From simulated multivariate data, this method gives better results than parametric methods, e.g., the generalized likelihood ratio method

- From simulated data (multivariate GARCH processes), it appears that the multivariate framework allows to detect the change-points with more precision than in the univariate case
- From simulated multivariate data, this method gives better results than parametric methods, e.g., the generalized likelihood ratio method
- From simulated multivariate data, the BIC criteria strongly overestimates the number of change-points

- From simulated data (multivariate GARCH processes), it appears that the multivariate framework allows to detect the change-points with more precision than in the univariate case
- From simulated multivariate data, this method gives better results than parametric methods, e.g., the generalized likelihood ratio method
- From simulated multivariate data, the BIC criteria strongly overestimates the number of change-points
- On real data (non Gaussian), the automatic method detects only the main changes (stock-market crashes, etc)

イロト イポト イラト イラト

- From simulated data (multivariate GARCH processes), it appears that the multivariate framework allows to detect the change-points with more precision than in the univariate case
- From simulated multivariate data, this method gives better results than parametric methods, e.g., the generalized likelihood ratio method
- From simulated multivariate data, the BIC criteria strongly overestimates the number of change-points
- On real data (non Gaussian), the automatic method detects only the main changes (stock-market crashes, etc)
- However, this method is interactive as the user can choose a more "realistic" configuration by choosing a suitable P-value \mathcal{P}_{K_i}

Bivariate series FT100 and S&P 500 Long-memory revisited Monte Carlo experiment

Long-memory revisited I

Figure: Left column: From top to bottom the sample autocorrelations on absolute returns on S&P 500 ($|r_S|$), absolute returns on FTSE 100 ($|r_F|$), and the sequence of their co–volatility $\sqrt{|r_S r_F|}$ for the whole sample.

Right Column: The sample ACF of these series for the time interval [508 : 1715]

3.1

Long-memory revisited II

- Long memory appears to be present in some time series (stock indices)
- But the intensity of strong dependence is lower than what is usually claimed
- This is consistent with what we get with the Increment Ratio Statistic (see the previous presentation by Donatas Surgailis)

(4 周下) イヨト イヨト

1

Monte Carlo experiment I

Consider the constant conditional correlation bivariate GARCH, used for modeling multivariate time series:

$$\left(\begin{array}{c}Y_{1,t}\\Y_{2,t}\end{array}\right) = \mathbf{\Sigma}_t^{\frac{1}{2}} \left(\begin{array}{c}\varepsilon_{1,t},\\\varepsilon_{2,t},\end{array}\right), \quad \left(\begin{array}{c}\varepsilon_{1,t},\\\varepsilon_{2,t},\end{array}\right) \sim N\left[\left(\begin{array}{c}0\\0\end{array}\right), \left(\begin{array}{c}1&0\\0&1\end{array}\right)\right],$$

where the diagonal components of Σ_t are time varying and are univariate GARCH(1,1) processes:

$$\boldsymbol{\Sigma}_{t} = \begin{pmatrix} \sigma_{1,t}^{2} & \rho \sigma_{1,t} \sigma_{2,t} \\ \rho \sigma_{1,t} \sigma_{2,t} & \sigma_{2,t}^{2} \end{pmatrix}, \quad \begin{array}{c} \sigma_{1,t}^{2} = \omega_{1} + \beta_{1} \sigma_{1,t-1}^{2} + \alpha_{1} Y_{1,t-1}^{2} \\ \sigma_{2,t}^{2} = \omega_{2} + \beta_{2} \sigma_{2,t-1}^{2} + \alpha_{2} Y_{2,t-1}^{2} \end{array}.$$

The coefficient of correlation ho is constant, $ho \in (-1,1)$

不同下 イヨト イヨト

San

Monte Carlo experiment II

• Locally stationary bivariate GARCH process

$$\begin{array}{rcl} \sigma_{1,t}^2 &=& \omega_1 + \beta_1 \sigma_{1,t-1}^2 + \alpha_1 Y_{1,t-1}^2 \\ \sigma_{2,t}^2 &=& \omega_2 + \beta_2 \sigma_{2,t-1}^2 + \alpha_2 Y_{2,t-1}^2 \end{array}, \quad \rho = 0.5, \quad t = 1, \dots, \tau_1, \end{array}$$

$$\begin{aligned} \sigma_{1,t}^2 &= \bar{\omega}_1 + \bar{\beta}_1 \sigma_{1,t-1}^2 + \bar{\alpha}_1 Y_{1,t-1}^2 \\ \sigma_{2,t}^2 &= \bar{\omega}_2 + \bar{\beta}_2 \sigma_{2,t-1}^2 + \bar{\alpha}_2 Y_{2,t-1}^2 \end{aligned}, \quad \rho = 0.3, \quad t = \tau_1 + 1, \dots, \tau_2, \end{aligned}$$

$$\begin{aligned} \sigma_{1,t}^2 &= \tilde{\omega}_1 + \tilde{\beta}_1 \sigma_{1,t-1}^2 + \tilde{\alpha}_1 Y_{1,t-1}^2 \\ \sigma_{2,t}^2 &= \tilde{\omega}_2 + \tilde{\beta}_2 \sigma_{2,t-1}^2 + \tilde{\alpha}_2 Y_{2,t-1}^2 \end{aligned}, \quad \rho = 0.7, \quad t = \tau_2 + 1, \dots, T.$$

• At time τ_1 all parameters of the process change, while at time τ_2 , only ρ changes. $\omega_1 = 0.1, \ \beta_1 = 0.3, \ \alpha_1 = 0.2, \ \omega_2 = 0.15, \ \beta_2 = 0.2, \ \alpha_2 = 0.2, \ \tilde{\omega}_1 = \bar{\omega}_1 = 0.2, \ \tilde{\beta}_1 = \bar{\beta}_1 = 0.1, \ \tilde{\alpha}_1 = \bar{\alpha}_1 = 0.1, \ \tilde{\omega}_2 = \bar{\omega}_2 = 0.05, \ \tilde{\beta}_2 = \bar{\beta}_2 = 0.3, \ \tilde{\alpha}_2 = \bar{\alpha}_2 = 0.2.$

化白豆 化塑胶 化医胶 化医胶 一座

Sar

Monte Carlo experiment III

Table: Average number of detected change–points and their location using the Schwarz criteria, $T = 500, \tau_1 = 200, \tau_2 = 350$. Std errors between parentheses

DGP	Nb of change-points	$\hat{ au}_1$	$\hat{ au}_2$
No Changes	2.1626 (1.47)		
Two Changes	3.8324 (1.55)	145.6920 (73.07)	243.7830 (100.99)

Table: Average number of detected change–points and their location using the adaptive method, $T = 500, \tau_1 = 200, \tau_2 = 350$. Std errors between parentheses

DGP	Nb of change-points	$\hat{ au}_1$	$\hat{ au}_2$
No changes	0.2962 (0.90)	_	—
Two changes	1.5650 (0.83)	217.1770 (64.31)	330.1390 (61.25)

Adaptive method detects with accuracy the number and location of changes

< - 10 - ▶

B b d B b

1

Current extensions

- In that case we considered multiple common change-points in multivariate time series
- We are now considering the case of non-common change points (work commissioned by EDF, French Electricity Company)

 Introduction
 Bivariate series FT100 and S&P 500

 Global detection method
 Long-memory revisited

 Applications
 Monte Carlo experiment

References

- Bulinski, A., Shashkin, A. (2007). *Limit Theorems for Associated Random Fields and Related Systems*. Advanced Series on Statistical Science and Applied Probability, Vol. 10, World Scientific Publishing.
- Csörgö, M., Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley.
- Inclán, C., Tiao, G.C. (1994). Use of cumulative sums of squares for retrospective detection of changes in variance. *Journal of the American Statistical Association*, **89**, 913–923.
- Kokoszka, P.S., Leipus, R. (1999). Testing for parameter changes in ARCH models. *Lithuanian Mathematical Journal*, **39**, 231–247.
- Kokoszka, P.S., Teyssière, G. (2002). Change-point detection in GARCH models : asymptotic and bootstrap tests. *Preprint*.
- Lavielle, M. (1999). Detection of multiple changes in a sequence of dependent variables. *Stochastic Processes and their Applications*, **83**, 79–102.
- Lavielle, M., Teyssière, G. (2006). Detection of multiple change-points in multivariate time Series. *Lithuanian Mathematical Journal*, **46**, 287–306.
- Lavielle, M., Teyssière, G., (2007). Adaptive detection of multiple change-points in asset price volatility, in G. Teyssière *et al.* editors, *Long Memory in Economics*, Springer Verlag, 129–156.
- Surgailis, D., Teyssière, G., Vaičiulis, M. (2008). The increment ratio statistic. *Journal of Multivariate* Analysis, **99**, 510–541.
 - Vostrikova, L. Yu. (1981). Detecting disorder in multidimensional random processes. *Soviet Mathematics Doklady*, **24**, 55–59.