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Introduction
Global detection method

Applications

Purpose of this work

Extend previous works on multiple change–points detection for univariate time
series (Lavielle 1999, Lavielle and Teyssière 2005)

These methods are defined for both weakly dependent and long–range
dependent data

Consider a multivariate framework (direct extension since using a Gaussian
contrast estimator)

Present an adaptive method for finding the number of change-points, (i.e., the
dimension of the model )

Remark

This work is the other side of the coin of the previous paper by Surgailis et al.
(2008).
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Applications

Standard univariate approach

In the univariate case : standard procedures for detecting single changes in
variance:

Change in variance for iid observations: Inclan and Tiao (1994)

Change in variance for weakly dependent observations, ARCH(∞): Kokoszka
and Leipus (1999)

Remark

Assumption of single change-point not realistic for financial time series

How to deal with the case of multiple change points?
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The multiple change-point case: the local approach

Binary segmentation algorithm (Vostrikova, 1981)

1 Apply the testing procedure on the whole sample

2 If a change point is detected, divide the series in two

3 Apply recursively the single change-point procedure on these segments until no
further change-point is detected.

Remark

This is a local detection algorithm
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Empirical example: the FTSE 100 index
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Figure: Log of returns on the FTSE 100 index rt = log(Pt/Pt−1) (1986–2002)

Remark

This series displays intermittency
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Is the binary segmentation procedure reasonable?
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Top: Binary segmentation
procedure
Bottom: Global (adaptive) method
presented later

There is a difference in the
resolution
Which dimension is the right one ?

Gilles Teyssière. Statistical Models for Financial Data II, Graz, May 2007 Long-range dependence and multiple change-points



Introduction
Global detection method

Applications

Is the binary segmentation procedure reasonable?

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  500  1000  1500  2000  2500  3000  3500  4000

 Log of returns

Change-Point Times

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  500  1000  1500  2000  2500  3000  3500  4000

 Log of returns

Change-Point Times

Top: Binary segmentation
procedure
Bottom: Global (adaptive) method
presented later
There is a difference in the
resolution

Which dimension is the right one ?

Gilles Teyssière. Statistical Models for Financial Data II, Graz, May 2007 Long-range dependence and multiple change-points



Introduction
Global detection method

Applications

Is the binary segmentation procedure reasonable?

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  500  1000  1500  2000  2500  3000  3500  4000

 Log of returns

Change-Point Times

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  500  1000  1500  2000  2500  3000  3500  4000

 Log of returns

Change-Point Times

Top: Binary segmentation
procedure
Bottom: Global (adaptive) method
presented later
There is a difference in the
resolution
Which dimension is the right one ?

Gilles Teyssière. Statistical Models for Financial Data II, Graz, May 2007 Long-range dependence and multiple change-points



Introduction
Global detection method

Applications

Finding the dimension of the model

Trade off between high resolution and parsimonious representation of the
process

We wish to capture the “main” features of the model

Method used: penalized likelihood function

How to choose the penalty parameter ?
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Multivariate change–points detection: Motivation
Empirical examples: the FTSE 100 and S&P 500 indices (1986–2002)
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Adaptive detection of multiple change-points in
variance (univariate case)

Top : log returns on FTSE 100
Bottom : log returns on S&P 500

Remark

Change-point times in the two series look very similar
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Contrast function
Selecting the dimension of the model
Adaptive choice for the penalty parameter

Global detection method

m–dimensional process {Yt = (Y1,t , . . . ,Ym,t)
′} changing abruptly

Process characterized by a parameter θ ∈ Θ constant between two changes

Let K be an integer and τ = {τ1, τ2, . . . , τK−1} be an ordered sequence of
integers verifying 0 < τ1 < τ2 < . . . < τK−1 < T .

For all 1 6 k 6 K , define a contrast function U(Yτk−1+1, . . . ,Yτk ; θ) for
estimating the parameter on the k th segment

Minimum contrast estimator of θ̂(Yτk−1+1, . . . ,Yτk ) on the kth segment of τ ,
is defined as the solution to the minimization problem:

U
(

Yτk−1+1, . . . ,Yτk ; θ̂(Yτk−1+1, . . . ,Yτk )
)

6 U(Yτk−1+1, . . . ,Yτk ; θ)

∀θ ∈ Θ.
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Global method: Contrast function I

For all 1 6 k 6 K , define G as follows:

G (Yτk−1+1, . . . ,Yτk ) = U
(

Yτk−1+1, . . . ,Yτk ; θ̂(Yτk−1+1, . . . ,Yτk )
)
.

Define the contrast function J(τ ,Y) :

J(τ ,Y) =
1

T

K∑
k=1

G (Yτk−1+1, . . . ,Yτk ),

with τ0 = 0 et τK = T .
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Global method: Contrast function II

We consider changes in the covariance matrix of {Yt}
Assume that there exists

an integer K?,

a sequence τ ? = {τ?1 , τ?2 , . . . , τ?K?} with τ?0 = 0 < τ?1 < ... < τ?K?−1 < τ?K? = T

K? (m ×m) covariance matrices Σ1,Σ2, . . . ,ΣK? such that
CovYt = E(Yt − EYt)(Yt − EYt)

′ = Σk for τ?k−1 + 1 6 t 6 τ?k .

We consider the case of changes in the covariance matrix (the mean of the
process is assumed constant)

There exist a m-dimensional vector µ such that EYt = µ pour t = 1, 2, . . . ,T .
Further, Σk 6= Σk+1 for 1 6 k 6 K? − 1
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Global method: Contrast function III

Change in the covariance matrix - constant mean (volatility models)

Gaussian contrast

J(τ ,Y) =
1

T

K∑
k=1

nk log |Σ̂τk |,

nk = τk − τk−1 is the length of the segment k

Σ̂τk : (m ×m) empirical covariance matrix evaluated on the segment k:

Σ̂τk =
1

nk

τk∑
t=τk−1+1

(Yt − Ȳ)(Yt − Ȳ)′, Ȳ = T−1
T∑
t=1

Yt
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Global method: Contrast function IV

Univariate framework by Lavielle

Similar rates of convergence

Original adaptive method for determining the penalty parameter
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Global method: Contrast function V

Asymptotic results for the minimum contrast estimator of τ ? are obtained in the
following framework:

A1

For all 1 6 i 6 m and 1 6 t ≤ T , define ηt,i = Yt,i − EYt,i . There exists C > 0
and 1 6 h < 2 such that for any u ≥ 0 and s ≥ 1,

E

(
u+s∑

t=u+1

ηt,i

)2

6 C (θ)sh.

(A1 is verified with h = 1 for weakly dependent series, and 1 < h < 2 for strongly
dependent series.)

A2

There exists a sequence 0 < a1 < a2 < . . . < aK?−1 < aK? = 1 such that for any
T > 1 and for any 1 6 k 6 K? − 1, τ?k = [Tak ].
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Global method: Contrast function VI

When the true number K? of segments is known, we have the following result
concerning the rate of convergence of the minimum contrast estimator of τ ?:

Theorem

Assume that conditions A1-A2 are satisfied. Let τ̂T the times that minimize the
empirical contrast. Then, the sequence {T‖τ̂T − τ ?‖∞} is uniformly tight in
probability:

lim
T→∞

lim
δ→∞

P( max
16k6K?−1

|τ̂T ,k − τ?k | > δ) = 0

Remark

K is usually unknown, so that we have to estimate the dimension of the model.
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Global method: Contrast function VII

Change-point times are estimated by minimizing the penalized contrast function

J(τ , y) + βpen(τ ) = J(τ , y) + βTK

where

1 βTK : penalty term that controls the level of resolution of the segmentation
τ = {τ1, τ2, . . . , τK−1}.

2 If β is a function of T that goes to 0 at an appropriate rate as T goes to
infinity, the following theorem states that the estimated number of segments
converges in probability to the real number of segments K?
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Global method: Contrast function VIII

Theorem

Let {βT} be a positive sequence of real numbers such that

βT −→
T→∞

0 and n2−hβT −→
T→∞

∞.

Then, under A1-A2, the estimated number of segments K (τ̂T ), where τ̂T is the
minimum penalized contrast estimate of τ ? obtained by minimizing
J(τ ,Y) + βTpen(τ ), converges in probability to K?.
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Penalty term

Standard choices for β (over-estimate the number of changes) :

βT = log(T )/T (Bayes Information Criteria)

βT = 4 log(T )/T 1−2d for strongly dependent series,

How to estimate the unknown d from real data ?

Spectral estimators over-estimate d and then artificially increase β.
Wavelet methods require large samples (issue of lowest octave selection)

Adaptive method: the segmentation does not depend too much on β

Consider the curve (K , JK ): we select the dimension K so that JK ceases to
decrease significantly
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Adaptive choice for the penalty parameter I

JK = J(τ̂K ,Y),

pK = pen(τ ), ∀τ ∈ TK
p̂K = pen(τ̂K ).

For any penalization parameter β > 0, the solution τ̂ (β) minimizes the penalized
contrast:

τ̂ (β) = argmin
τ

(J(τ ,Y) + βpen(τ ))

= τ̂ K̂(β)

where
K̂ (β) = arg min

K>1
{JK + βpK}.

Gilles Teyssière. Statistical Models for Financial Data II, Graz, May 2007 Long-range dependence and multiple change-points



Introduction
Global detection method

Applications

Contrast function
Selecting the dimension of the model
Adaptive choice for the penalty parameter

Adaptive choice for the penalty parameter II

The solution K̂ (β) is a piecewise constant function of β.

More precisely, if K̂ (β) = K ,

JK + βpK < min
L 6=K

(JL + βpL).

Thus, β satisfies

max
L>K

JK − JL
pL − pK

< β < min
L<K

JL − JK
pK − pL

.

Then, there exists a sequence {K1 = 1 < K2 < . . .}, and a sequence
{β0 =∞ > β1 > . . .}, with

βi =
JKi − JKi+1

pKi+1 − pKi

, i > 1,

such that K̂ (β) = Ki , ∀β ∈ [βi , βi−1).

Furthermore, the subset {(pKi , JKi ), i > 1} is the convex hull of the set
{(pK , JK ),K > 1}.
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Adaptive choice for the penalty parameter III

In summary, we propose the following procedure:

1 for K = 1, 2, . . . ,KMAX , compute τ̂K , JK = J(τ̂K ,Y) and pK = pen(τ̂K ),

2 compute the sequences {Ki} and {βi}, and the lengths {lKi} of the intervals
[βi , βi−1),

3 retain the greatest value(s) of Ki such that lKi � lKj , for j > i .
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Adaptive choice for the penalty parameter IV

Method difficult to automatize

Consider another approach for selecting the dimension of the model

Method that provides very good results and very easy to automate for practical
applications

Idea of the method: model the decrease of the sequence {JK} when there is
no change in the series {Yt} and look for which value of K this model adjusts
the sequence of observed contrast

Without changes in the variance, the joint distribution of {JK} is very difficult
to model analytically

However, Monte Carlo simulations shows that this sequence decreases as
c1K + c2K log(K ).

Gilles Teyssière. Statistical Models for Financial Data II, Graz, May 2007 Long-range dependence and multiple change-points



Introduction
Global detection method

Applications

Contrast function
Selecting the dimension of the model
Adaptive choice for the penalty parameter

Adaptive choice for the penalty parameter V
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are different for each of these
series).

Gilles Teyssière. Statistical Models for Financial Data II, Graz, May 2007 Long-range dependence and multiple change-points



Introduction
Global detection method

Applications

Contrast function
Selecting the dimension of the model
Adaptive choice for the penalty parameter

Algorithm for the adaptive choice for the penalty parameter

Algorithm

For i = 1, 2, . . .,

1 fit the model
JK = c1K + c2K log(K ) + eK ,

to the sequence {JK ,K > Ki}, assuming that {eK} is a sequence of i.i.d. centered
Gaussian random variables,

2 evaluate the probability that JKi−1 follows also this model, i.e., estimate the probability

PKi = P
(
eKi−1 > JKi−1 − ĉ1(Ki − 1) + ĉ2(Ki − 1) log(Ki − 1)

)
,

under this estimated model.
3 Then, the estimated number of segments will be the largest value of Ki such that the

P–value PKi is smaller than a given threshold α.
(We set α = 10−7 and KMAX = 20 in the numerical examples.)
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Bivariate series FT100 and S&P 500
Long–memory revisited
Monte Carlo experiment

Application to the bivariate series FT100 and S&P 500
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Bivariate series FT100 and S&P 500
Long–memory revisited
Monte Carlo experiment

Application of the adaptive method

From simulated data (multivariate GARCH processes), it appears that the
multivariate framework allows to detect the change-points with more precision
than in the univariate case

From simulated multivariate data, this method gives better results than
parametric methods, e.g., the generalized likelihood ratio method

From simulated multivariate data, the BIC criteria strongly overestimates the
number of change–points

On real data (non Gaussian), the automatic method detects only the main
changes (stock-market crashes, etc)

However, this method is interactive as the user can choose a more “realistic”
configuration by choosing a suitable P–value PKi
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From simulated multivariate data, the BIC criteria strongly overestimates the
number of change–points

On real data (non Gaussian), the automatic method detects only the main
changes (stock-market crashes, etc)

However, this method is interactive as the user can choose a more “realistic”
configuration by choosing a suitable P–value PKi
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Long-memory revisited I
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Figure: Left column: From top to bottom the sample autocorrelations on absolute returns on S&P
500 (|rS |), absolute returns on FTSE 100 (|rF |), and the sequence of their co–volatility

√
|rS rF | for

the whole sample.
Right Column: The sample ACF of these series for the time interval [508 : 1715]
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Long-memory revisited II

Long memory appears to be present in some time series (stock indices)

But the intensity of strong dependence is lower than what is usually claimed

This is consistent with what we get with the Increment Ratio Statistic (see the
previous presentation by Donatas Surgailis)
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Monte Carlo experiment I

Consider the constant conditional correlation bivariate GARCH, used for modeling
multivariate time series:(

Y1,t

Y2,t

)
= Σ

1
2
t

(
ε1,t ,
ε2,t ,

)
,

(
ε1,t ,
ε2,t ,

)
∼ N

[(
0
0

)
,

(
1 0
0 1

)]
,

where the diagonal components of Σt are time varying and are univariate
GARCH(1,1) processes:

Σt =

(
σ2

1,t ρσ1,tσ2,t

ρσ1,tσ2,t σ2
2,t

)
,

σ2
1,t = ω1 + β1σ

2
1,t−1 + α1Y

2
1,t−1

σ2
2,t = ω2 + β2σ

2
2,t−1 + α2Y

2
2,t−1

.

The coefficient of correlation ρ is constant, ρ ∈ (−1, 1)
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Monte Carlo experiment II

Locally stationary bivariate GARCH process

σ2
1,t = ω1 + β1σ

2
1,t−1 + α1Y

2
1,t−1

σ2
2,t = ω2 + β2σ

2
2,t−1 + α2Y

2
2,t−1

, ρ = 0.5, t = 1, . . . , τ1,

σ2
1,t = ω̄1 + β̄1σ

2
1,t−1 + ᾱ1Y

2
1,t−1

σ2
2,t = ω̄2 + β̄2σ

2
2,t−1 + ᾱ2Y

2
2,t−1

, ρ = 0.3, t = τ1 + 1, . . . , τ2,

σ2
1,t = ω̃1 + β̃1σ

2
1,t−1 + α̃1Y

2
1,t−1

σ2
2,t = ω̃2 + β̃2σ

2
2,t−1 + α̃2Y

2
2,t−1

, ρ = 0.7, t = τ2 + 1, . . . ,T .

At time τ1 all parameters of the process change, while at time τ2, only ρ
changes.
ω1 = 0.1, β1 = 0.3, α1 = 0.2, ω2 = 0.15, β2 = 0.2, α2 = 0.2, ω̃1 = ω̄1 = 0.2,
β̃1 = β̄1 = 0.1, α̃1 = ᾱ1 = 0.1, ω̃2 = ω̄2 = 0.05, β̃2 = β̄2 = 0.3,
α̃2 = ᾱ2 = 0.2.
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Monte Carlo experiment III

Table: Average number of detected change–points and their location using the Schwarz
criteria, T = 500, τ1 = 200, τ2 = 350. Std errors between parentheses

DGP Nb of change–points τ̂1 τ̂2

No Changes 2.1626 (1.47) — —
Two Changes 3.8324 (1.55) 145.6920 (73.07) 243.7830 (100.99)

Table: Average number of detected change–points and their location using the adaptive
method, T = 500, τ1 = 200, τ2 = 350. Std errors between parentheses

DGP Nb of change–points τ̂1 τ̂2

No changes 0.2962 (0.90) — —
Two changes 1.5650 (0.83) 217.1770 (64.31) 330.1390 (61.25)

Adaptive method detects with accuracy the number and location of changes
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Current extensions

In that case we considered multiple common change–points in multivariate
time series

We are now considering the case of non-common change points (work
commissioned by EDF, French Electricity Company)
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