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Abstract

This paper studies properties of tests for long memory for general fourth order stationary
sequences. We propose a rescaled variance test based on V/S statistic which is shown to have
a simpler asymptotic distribution and to achieve a somewhat better balance of size and power
than Lo’s (Econometrica 59 (1991) 1279) modi6ed R/S test and the KPSS test of Kwiatkowski
et al. (J. Econometrics 54 (1992) 159). We investigate theoretical performance of R/S, KPSS
and V/S tests under short memory hypotheses and long memory alternatives, providing a Monte
Carlo study and a brief empirical example. Assumptions of the same type are used in both short
and long memory cases, covering all persistent dependence scenarios. We show that the results
naturally apply and the assumptions are well adjusted to linear sequences (levels) and to squares
of linear ARCH sequences (volatility).
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1. Introduction

Long memory is commonly used to describe persistent dependence between the time
series observations Xk as the lag increases and, in the context of covariance stationary
sequences, is typically characterized by hyperbolic decay, k2d−1(0¡d¡ 1=2), of the
autocovariance function Cov(Xk; X0), so that it is not absolutely summable. A series
is said to have short memory if the auto-covariance function is absolutely summable.
These de6nitions are applicable to any stationary sequences and we adopt them in this
paper.
Various tools for detecting possible long memory in time series were proposed in

the econometric and statistical literature. Geweke and Porter-Hudak (1983) introduced
a semiparametric procedure, whereas, following the work of Hurst (1951), Mandelbrot
and Taqqu (1979) and others, Lo (1991) developed a nonparametric R/S-type test,
which has become widely applicable in empirical literature. Lobato and Robinson
(1998) considered a nonparametric test for I(0) against long memory alternatives.
This paper deals with particular nonparametric R/S-type tests for long memory in

covariance stationary sequences. The asymptotics of the tests are established under
null and alternative hypotheses. In addition to Lo’s test and KPSS test of Kwiatkowski
et al. (1992), we consider a new test, called rescaled variance test, based on a V/S
statistic, which diHers from KPSS statistic by correction for a mean and is shown to
have a simpler asymptotic distribution and to achieve a better balance of size and
power than the other two tests. To obtain the corresponding asymptotics we suggest
simple assumptions nesting both short and long memory cases.
Although we deal with general stationary series, particular attention is turned to

linear models and nonlinear ARCH-type models, which are popular in applications.
The linear models (e.g. FARIMA-type moving averages), which are well known and
have been extensively investigated, are used to model a short and long memory in
levels.
Nonlinear ARCH-type models, having diHerent dependence structure from linear

models, are well-suited to model some of the regularities observed in 6nancial data.
While long memory has been shown to be present in geophysical and, more recently,
in network traIc data, its presence in market data is a matter of debate. Empirical
studies suggest that the returns rk on asset prices are essentially uncorrelated, but the
transforms such as the squares r2k or absolute values |rk |, may exhibit some form of
persistent (strong) dependence. While the presence of a very small correlation in returns
can be to a large extent explained by factors like bid–ask spread and non-synchronous
trading, see Campbell et al. (1997), long memory in returns would be a radical de-
parture from the random walk hypothesis and the assumption of the unpredictability
of asset returns which underlines the classical asset pricing theory. The presence of
strong dependence in the series of squares r2k and absolute values |rk | of returns does
not contradict the eIcient market hypothesis, but aHects the volatility estimators and
thus the derivative pricing formulas relying on these estimators.
Conclusions about strong correlation in squared returns are typically reached by

examining autocorrelation plots and using graphical methods without applying rigorous
statistical testing procedures. Even though several attempts have been made to construct
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long memory ARCH-type models, the theory supporting statistical conclusions is still
being developed, some earlier claims, e.g. on the existence of stationary long memory
ARCH processes, eventually appear to be incorrect. Interested readers are referred to
Ding and Granger (1996), Baillie et al. (1996), Robinson and ZaHaroni (1998), Giraitis
et al. (2000a) (further GKL (2000)), Giraitis et al. (2000c) (further GRS (2000)) and
references therein. We also note that the observed characteristics, like autocorrelations
and spectral estimates, which indicate strong dependence, may in fact, be due to some
forms of non-stationarity like trends or changing parameters, see e.g. Mikosch and
StKaricKa (1999), Giraitis et al. (2001), Kirman and Teyssi.ere (2002), Teyssi.ere (2002).
The empirical study in the present paper shows that in both linear and ARCH cases

the test based on the V/S statistic is less sensitive to the choice of the bandwidth
parameter q than the test based on Lo’s statistic. The search of optimal choice of q
remains however a complex problem. The V/S test has practically uniformly higher
power than the KPSS test and, unlike for the latter, the asymptotic distribution of the
V/S statistic has a simple form so that asymptotic critical values can be found using a
table of the standard Kolmogorov statistic.
In order to derive the asymptotic distributions of the test statistics, a functional

limit theorems are needed. The veri6cation of the convergence of the denominator of
the three statistics is also not trivial: typically a certain condition on the fourth order
cumulants (see Theorem 3.1) must be assumed. The condition we propose is naturally
satis6ed by linear and ARCH sequences. Alternatively, appropriate mixing assumptions
could be imposed (see Davidson and de Jong, 2000; Davidson, 2002).
The main objective of the present paper is to advance the relevant theory. The

related empirical studies by Kirman and Teyssi.ere (2002), Teverovsky et al. (1999a)
on R/S-type and Lobato–Robinson tests for long memory provide an additional useful
guidance for practical use of these procedures. They show that the long memory test
of Lobato and Robinson (1998) based on the semiparametric estimation of the long
memory parameter might compete with R/S-type tests in the class of linear models.
A theoretical extension of the Lagrange Multiplier type test of Lobato and Robinson
(1998) to the case of nonlinear models is a diIcult open problem. For a recent study
in this direction see Robinson and Henry (1999).
The paper is organized as follows. The test statistics are introduced in Section 2.

In Section 3 we describe the null and alternative hypotheses and establish the asymp-
totics of the considered statistics. As particular examples of processes satisfying these
hypothesis we consider linear sequences and squares of linear ARCH observations. In
Section 4, we present the results of a small simulation study which oHers some insight
into the 6nite sample performance of the tests. Final comments are given in Section 5.

2. Test statistics

This section presents three R/S-type tests for long memory. We show in the sequel
by means of a simulation study that the new V/S statistic, introduced in Section 2.3,
outperforms the R/S and KPSS statistics. In this section, X1; : : : ; XN is the observed
sample.
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2.1. Modi7ed R/S statistic

The rescaled range, or R/S analysis was introduced by Hurst (1951) and subse-
quently re6ned by Mandelbrot and his collaborators (see Mandelbrot and Wallis, 1969;
Mandelbrot, 1972, 1975; Mandelbrot and Taqqu, 1979).
Lo (1991) introduced the modi7ed R/S statistic

QN (q) =
1
ŝN;q

 max
16k6N

k∑
j=1

(Xj − NXN )− min
16k6N

k∑
j=1

(Xj − NXN )

 ; (2.1)

where NXN is the sample mean N−1∑N
j=1 Xj and ŝ2N;q is an estimator of

�2 =
∑

j Cov(Xj; X0) de6ned by

ŝ2N;q =
1
N

N∑
j=1

(Xj − NXN )2 + 2
q∑
j=1

!j(q)�̂j : (2.2)

In (2.2),

!j(q) = 1− j
q+ 1

are the Bartlett weights and the �̂j are the sample covariances:

�̂j =
1
N

N−j∑
i=1

(Xi − NXN )(Xi+j − NXN ); 06 j¡N: (2.3)

The classical R/S statistic corresponds to q = 0, so that (2.2) does not contain the
second term. Whereas the classical R/S analysis focused on estimating the limit of the
ratio logQN (0)=logN , called Hurst coeIcient, Lo (1991) proposed a statistical hypoth-
esis testing procedure to detect long memory. It should be noted that the asymptotic
distribution of the statistics QN (0) depends strongly on the correlation structure of the
data and is not asymptotically parameter free, so it cannot be used to construct a test.
The second term in (2.2) was suggested by Lo (1991) in order to take into account
short range dependence. He has shown that by allowing q to increase slowly with the
sample size, asymptotic distribution of QN ≡ QN (q) is parameter free and robust to
many forms of weak dependence in the data. As pointed out by Lo (1991) other win-
dows yielding non-negative estimators of spectral density, such as Parzen window, can
be used as well. Andrews (1991) provides a data-depend rule for choosing q, which,
however, has only limited applicability.
The modi6ed R/S statistic has been extensively used to detect long memory in spec-

ulative assets. To name just a few contributions, Goetzmann (1993) and Teverovsky
et al. (1999b) investigated long memory in stock returns, Crato and deLima (1994),
Breidt et al. (1998)—in conditional variance of stock returns. Cheung (1993a)—in
foreign-exchange rates, Cheung and Lai (1993)—in gold prices, Liu et al. (1993)—in
currency futures prices. Finite sample performance of the modi6ed R/S and other statis-
tics used to detect long memory was examined by Monte Carlo methods by Cheung
(1993b) and Hauser (1997).
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2.2. KPSS statistic

Another important R/S-type test is the KPSS test introduced by Kwiatkowski
et al. (1992). In the context of testing for long memory in a stationary sequence
the KPSS statistic takes the form:

TN =
1

ŝ2N;qN 2

N∑
k=1

 k∑
j=1

(Xj − NXN )

2 (2.4)

with ŝ2N;q given by (2.2).
Kwiatkowski et al. (1992) introduced a KPSS test as a test of trend stationarity

against a unit root alternative. Lee and Schmidt (1996) used the KPSS statistic to test
for the presence of long memory in a stationary time series, whereas Lee and Amsler
(1997) considered non-stationary long memory alternatives. Kwiatkowski et al. (1992)
and Shin and Schmidt (1992) obtained the asymptotic distribution of the KPSS statistic
under the null hypothesis of trend stationarity and weakly dependent error process.
Lee and Schmidt (1996) and Lee and Amsler (1997) gave its asymptotic distribution
under stationary long memory and non-stationary fractionally integrated alternatives,
respectively.

2.3. V/S statistic

We propose to introduce a centering in the statistic TN and consider the following
statistic, which we call V/S or rescaled variance statistic:

MN =
1

ŝ2N;qN 2

 N∑
k=1

 k∑
j=1

(Xj − NXN )

2 − 1
N

 N∑
k=1

k∑
j=1

(Xj − NXN )

2


with ŝ2N;q given by (2.2).
The V/S in the title comes from variance=S, as the statistic MN has the form

MN = N−1 V̂ar(S
∗
1 ; : : : ; S

∗
N )

ŝ2N;q
; (2.5)

where S∗k =
∑k

1(Xj− NXN ) are the partial sums of the observations and V̂ar(S∗1 ; : : : ; S
∗
N )=

N−1 N∑
1
(S∗j − NS∗N )

2 is their sample variance. In this notation, the modi6ed R/S statistic

can be written as

QN (q) =
max
16k6N

S∗k − min
16k6N

S∗k

ŝN;q
: (2.6)

Thus, the range of the partial sums S∗k in (2.6) has been replaced in (2.5) by their
variance, and the scaling has been accordingly readjusted. Similarly, the KPSS statistic
(2.4) may now be seen as a rescaled sample second moment of the partial sums. It
can be hoped that “corrected for a mean” statistic MN will be more sensitive to “shifts
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in variance” (see Durbin, 1973, p. 36) than TN and will have higher power than both
the R/S and KPSS statistics against long memory in squares. This is con6rmed by
simulation experiments presented in Section 4. We will see in Section 3 that after a
simple transformation the asymptotic distribution of MN coincides with the limiting
distribution of the standard Kolmogorov statistic, see (3.18).
It should be noted that the asymptotic distributions and mutual relationships between

the test statistics considered in this paper are basically the same as for the corresponding
statistics based on the empirical distribution function. Namely, the relationship between
the R/S and the V/S statistic MN is analogous to that between Kuiper’s (1960) and
Watson’s (1961) statistic in the context of goodness-of-6t testing on the circle. While
the classical Kolmogorov and von Mises statistics are well suited to real-valued obser-
vations, they are not suitable for testing the goodness-of-6t of observations on a circle.
To rectify this shortcoming, Kuiper (1960) introduced the following modi6cation of
the classical Kolmogorov statistic:

KN = sup
06t61

(F̂N (t)− F(t))− inf
06t61

(F̂N (t)− F(t));

where F̂N (t) is the empirical distribution function of the variables X1; : : : ; XN taking
values on a circle of unit length, and F(t), 06 t6 1 is their distribution function.
Watson’s statistic WN is analogous to von Mises statistic and has the following form

WN = N

∫ 1

0
(F̂N (t)− F(t))2 dF(t)−

(∫ 1

0
(F̂N (t)− F(t)) dF(t)

)2 :
The applicability of statistics KN and WN is, however, not restricted to tests on the
unit circle; they have been shown to have high power when one is more interested in
the discrimination against shifts in variance than against shifts in mean.
In a slightly diHerent context, Tsay (1998) considered a test of the null hypothesis

of diHerence stationarity against stationary and non-stationary fractionally integrated
alternatives. He introduced the modi7ed Durbin–Watson statistic whose asymptotic
distribution under appropriate assumptions diHers from that of the V/S statistic in that
the Brownian bridge is replaced by the Brownian motion.

3. Asymptotic theory

We derive in this section the asymptotic distribution of the R/S-type statistics under
the short memory null hypothesis (Assumption S) and the long memory alternative
(Assumption L). We also consider the linear and ARCH-type models as speci6c ex-
amples and show that these conditions are well adjusted to the speci6c structure of
these models.
To cover basic possible dependence structures and to investigate in full the behavior

of the tests for general stationary sequences, we formulate our assumptions in the same
terms both for the short and long memory. These assumptions are rather non-restrictive
and include conditions on the 4th order cumulants. It should be noted that although we
restrict ourselves to stationary sequences, the null hypothesis can, however, be extended
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to include certain non-stationary processes as in Lo (1991). Since this would lead to
further technical complications in the proofs, we do not pursue it here.
Throughout the paper, for stationary sequences {Xk}, we denote

� = EXk and �k = Cov(Xk; X0):

In the following, {W (t); 06 t6 1} is the standard Wiener process (Brownian motion)
and {W 0(t); 06 t6 1} is the Brownian bridge W 0(t)=W (t)−tW (1). By ⇒ we denote

the weak convergence of random variables, and by
D[0;1]→ the weak convergence in the

space D[0; 1] endowed with the Skorokhod topology (see Billingsley, 1968).
Short memory null hypothesis. Typically a stationary sequence {Xk} is said to have

short memory if
∞∑

j=−∞
|�j|¡∞: (3.1)

In order to investigate rigorously the asymptotic behavior of the tests we need some
additional assumptions. We formulate them as

Assumption S. The fourth order stationary sequence {Xk} satis6es (3.1); convergence

N−1=2
[Nt]∑
j=1

(Xj − EXj)
D[0;1]−→�W (t); as N → ∞ (3.2)

holds, where �2 =
∑∞

j=−∞ �j 	= 0 and the fourth order cumulants !(h; r; s) satisfy

sup
h

∞∑
r; s=−∞

|!(h; r; s)|¡∞: (3.3)

Recall that

!(h; r; s) = E[(Xk − �)(Xk+h − �)(Xk+r − �)(Xk+s − �)]
−(�h�r−s + �r�h−s + �s�h−r): (3.4)

Long memory alternative. We say that a stationary sequence {Xk} has long memory
(LM) if

∑∞
j=−∞ |�k | = ∞. To characterize a class of long memory sequences for

which consistency of the tests can be showed and asymptotic distribution derived, we
introduce a set of long memory conditions (Assumption L) using the same concepts as
in the short memory case. In the following, WH (t) stands for the fractional Brownian
motion with parameter H , i.e. a Gaussian process with mean zero and covariances
EWH (t1)WH (t2) = 1=2 (t2H1 + t2H2 − |t1 − t2|2H ).

Assumption L. The fourth order stationary sequence {Xk} satis6es the following con-
ditions:

�k ∼ ck2d−1; (3.5)

where c¿ 0 and 0¡d¡ 1=2; convergence

N−1=2−d
[Nt]∑
j=1

(Xj − EXj)
D[0;1]−→cdW1=2+d(t); as N → ∞ (3.6)
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holds, where cd is a positive number; the cumulants !(h; r; s) (3.4) satisfy the
assumption

sup
h

N∑
r; s=−N

|!(h; r; s)|=O(N 2d): (3.7)

In cases where condition (3.7) is diIcult to check, a weaker Assumption L′ can be
used, which nevertheless allows to prove the consistency of the tests.

Assumption L′. The stationary sequence {Xk} satis6es (3.5) and (3.6).

3.1. Asymptotics for the modi7ed R=S statistic

We begin with the asymptotic distribution of the modi6ed R/S statistic (2.1) un-
der the short memory hypothesis. In the sequel we shall denote by q the bandwidth
parameter such that q→ ∞, q=N → 0 as N → ∞.
The asymptotics below follow using convergence (3.2) or (3.6), respectively,

continuous mapping theorem and asymptotic properties of estimate ŝ2N;q given in
Theorem 3.1.

Proposition 3.1. Suppose the sequence {Xk} satis7es Assumption S. Then

N−1=2QN ⇒ UR=S; (3.8)

where

UR=S = max
06t61

W 0(t)− min
06t61

W 0(t) (3.9)

and W 0(t) =W (t)− tW (1) is a Brownian bridge.

Remark 3.1. The distribution function of the random variable UR=S (3.9) (see Feller,
1951; Kuiper, 1960) is

FUR=S (x) = 1 + 2
∞∑
k=1

(1− 4k2x2)e−2k
2x2 : (3.10)

Critical values at any signi6cance level can easily be obtained (see Table 2 in Lo,
1991) and it can be shown that

EUR=S =
√
'=2; VarUR=S = '('− 3)=6:

We note that distribution function (3.10) coincides with the limiting distribution in the
Kuiper’s (1960) goodness-of-6t test statistic.

Proposition 3.2 below shows that the test is consistent against long memory alterna-
tives, and, in principle, can be used to study the power of the test.

Proposition 3.2. Suppose that the sequence {Xk} satis7es Assumption L. Then

(q=N )dN−1=2QN ⇒ ZR=S; (3.11)
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where

ZR=S = sup
06t61

W 0
1=2+d(t)− inf

06t61
W 0
1=2+d(t)

and W 0
H (t) =WH (t)− tWH (1) is the fractional Brownian bridge with parameter H .

Under weaker Assumption L′, the consistency of the test still holds:

N−1=2QN
P→∞: (3.12)

3.2. Asymptotics for the KPSS statistic

The asymptotic distribution of the statistic TN de6ned by (2.4) can be handled in a
similar way as that of the R/S statistic. We restrict ourselves to stating the results.

Proposition 3.3. Under Assumption S,

TN ⇒ UKPSS; (3.13)

where

UKPSS =
∫ 1

0
(W 0(t))2 dt:

Remark 3.2. The distribution function of the random variable UKPSS has a series expan-
sion in terms of special functions which converges very fast and can be used to tabulate
the distribution of UKPSS, see Kiefer (1959). The direct simulations of Kwiatkowski
et al. (1992) which give slightly imprecise critical values, are unnecessary.
The random variable UKPSS admits a series representation (see Rosenblatt, 1952)

UKPSS =
1
'2

∞∑
j=1

Y 2j
j2
; (3.14)

where the Yj are independent standard normal variables. Using (3.14), it is easy to
verify that

EUKPSS = 1=6; VarUKPSS = 1=45:

Proposition 3.4. Under Assumption L,

(q=N )2dTN ⇒ ZKPSS; (3.15)

where

ZKPSS =
∫ 1

0
(W 0

1=2+d(t))
2 dt:

Under Assumption L′,

TN
P→∞: (3.16)
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3.3. Asymptotics for the V/S statistic

Proceeding as in Sections 3.1 and 3.2 we obtain the following results.

Proposition 3.5. Under Assumption S,

MN ⇒ UV=S; (3.17)

where

UV=S =
∫ 1

0
(W 0(t))2dt −

(∫ 1

0
W 0(t) dt

)2
:

Remark 3.3. The distribution function of the random variable UV=S is given by the
formula

FUV=S (x) = 1 + 2
∞∑
k=1

(−1)ke−2k2'2x (3.18)

established by Watson (1961) in the context of goodness-of-6t tests on a circle. Note
that FUV=S (x)=FK ('

√
x), where FK is the asymptotic distribution function of the stan-

dard Kolmogorov statistic sup0¡t¡1
√
N (F̂N (t)− t). Moreover, UV=S admits the repre-

sentation

UV=S =
1
4'2

∞∑
j=1

(Y 22j−1 + Y
2
2j)

j2
;

where the Yj are independent standard normal variables, and so UV=S = (U1 + U2)=4,
where U1 and U2 are two independent copies of the random variable UKPSS appearing
in (3.13). It follows that

EUV=S = 1=12; VarUV=S = 1=360:

Thus the statistic MN has a smaller variance than TN .

Proposition 3.6. Under Assumption L,

(q=N )2dMN ⇒ ZV=S; (3.19)

where

ZV=S =
∫ 1

0
(W 0

1=2+d(t))
2 dt −

(∫ 1

0
W 0
1=2+d(t) dt

)2
:

Under Assumption L′,

MN
P→∞: (3.20)
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3.4. Asymptotic behavior of the variance estimator ŝ2N;q

The following result holds for the estimator ŝ2N;q (2.2):

Theorem 3.1. Let {Xk} be a fourth order stationary process and let q→ ∞, q=N → 0,
as N → ∞.

(i) (Short memory case) If (3.1) and (3.3) hold, then

ŝ2N;q
P→ �2 :=

∑
j

�j: (3.21)

(ii) (Long memory case) If (3.5) and (3.7) hold, then

q−2dŝ2N;q
P→c2d :=

c
d(2d+ 1)

: (3.22)

(The constant c in (3.22) is the same as in (3.5).)
(iii) Under Assumption L′,

N−2dŝ2N;q
P→0: (3.23)

Remark 3.4. Note that if f(-) denotes spectral density of {Xk}, then �2 = 2'f(0), so
(2')−1ŝ2N;q is an estimator of f(0). The assumptions of Theorem 3.1 (i) are weaker
than the usual assumptions required in this context. For example, Theorem 9.3.4 of
Anderson (1971) states, in particular, that if (3.1) and the condition

∞∑
h;r; s=−∞

|!(h; r; s)|¡∞ (3.24)

hold, then

lim
N→∞

N
q
Var f̂ N (0) = 2f2(0)

∫ 1

−1
K2(x) dx; (3.25)

provided N → ∞, q → ∞ and q=N → 0. In (3.25) f̂ N (-) is a kernel estimator of a
spectral density f(-) de6ned by

f̂ N (-) =
1
2'

∑
|j|6q

K
(

j
q+ 1

)
cos(-j)�̂j ; (3.26)

where the sample covariances �̂j are de6ned by (2.3), and K(·) is a continuous sym-
metric function on [ − 1; 1]. Observe that setting K(x) = 1 − |x| and - = 0 in (3.26)
we have 2'f̂ N (0) = ŝ2N;q, cf. (2.2). Condition (3.24) is stronger than (3.3) and more
diIcult to verify.

Remark 3.5. Examination of the proof of Theorem 3.1, see (6.6), shows that assump-
tions (3.3) and (3.7) can be replaced by more general condition

N∑
r; s=−N

|!(h; r; s)|6CN/
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uniformly in 16 h6N and N at the expense of a stronger assumption on q →
∞: q=N 1−/ → 0 (06 /¡ 1) in the short memory case (i) and q=N (1−/)=(1−2d) → 0
(2d6 /¡ 1) in the long memory case (ii).

To illustrate the range of applicability of general Assumptions S and L we consider
two examples. First of them concerns the well-known class of linear sequences

Xk =
∞∑

j=−∞
aj0k−j; (3.27)

where the aj are real weights,
∑

j a
2
j ¡∞, and the 0j are iid random variables with

zero mean, unit variance and 6nite fourth moment E040¡∞. For linear process (3.27)
we have �k =

∑∞
j=−∞ aj+kaj and

!(h; r; s) = (E040 − 3)
∞∑

k=−∞
akak+hak+rak+s: (3.28)

If the coeIcients aj satisfy condition∑
j

|aj|¡∞; (3.29)

then {Xk} satis6es short memory Assumption S.
Further, if

aj ∼ cjd−1 (j → ∞) (3.30)

for some c¿ 0 and 0¡d¡ 1=2, then {Xk} satis6es long memory Assumption L.
Indeed, in case when (3.30) holds, convergence (3.6) is well-known in the long memory
literature, see, e.g. Davydov (1970). To verify (3.7), using (3.28) we get

kN :=
N∑

r; s=−N
|!(h; r; s)|6C

∑
|r|;|s|6N

∞∑
u=−∞

|auau+hau+rau+s|

6 C

 ∑
|u|62N

|auau+h|
∑

|r|;|s|63N
|ar‖as|+

∑
|u|¿2N

|auau+h|
∑

|r|;|s|6N
|au+r‖au+s|

 :
Since

∑
u a

2
u ¡∞,

∑
|u|6N |au|6CNd and |au+r|6CN−1+d for |u|¿ 2N , |r|6N ,

we get

kN 6C

( ∞∑
u=−∞

a2u

)
 ∑

|r|63N
|ar|
2 + N 2d

6CN 2d:

Besides that, under (3.30) the covariance �k = Cov(Xk; X0) has property (3.5), i.e.

�k ∼ Cdk2d−1; (3.31)

with Cd = c24−d'−1=22(d)2(1=2 − d). The relationship between the constants cd in
(3.6) and Cd in (3.31) is c2d = Cd=(d(2d+ 1)), and is easy to establish.
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Observe, that relation (3.30), and hence also the long memory Assumption L, are
satis6ed by fractional ARIMA (p; d; q) sequence de6ned by

4p(L)(1− L)dXk =5q(L)0k (0¡d¡ 1=2); (3.32)

where 4p(L) and 5q(L) are polynomials of degree p and q, respectively, 4p(·) satis-
fying the usual root requirement. In this case

aj ∼ 5q(1)
4p(1)2(d)

jd−1;

see Theorem 11.10 of Gourieroux and Monfort (1997).
The second example concerns the so-called linear ARCH (∞) or LARCH (∞)

process, introduced by Robinson (1991).
As mentioned in the introduction, the classical ARCH(∞) model does not posses

long memory, so in order to have an ARCH-type model nesting both short and long
memory processes, a diHerent speci6cation is needed. The LARCH model is de6ned
by

rk = �k0k ; �k = /+
∞∑
j=1

6jrk−j; (3.33)

where {0k ; k ∈Z} is a sequence of zero mean 6nite variance iid random variables,
/ is a real number and the weights 6j determine the memory structure: if they de-
cay suIciently fast, we have a short memory model, if they decay hyperbolically, a
long memory model investigated theoretically by GRS (2000) is obtained. A rigorous
mathematical theory exists only for the long memory LARCH. We conjecture that if
the 6j are absolutely summable (e.g. exponentially decaying), with

∑ |6j| bounded by
an appropriate constant and the innovations have moments of suIciently high order,
then the r2k satisfy Assumption S. In simulations in Section 4, we consider the short
memory LARCH model with the 6j given by

1 +
∞∑
j=1

6jLj =
1− 7L
1− 8L; |8|¡ 1: (3.34)

The weights 6j for the long memory LARCH model satisfy

6j ∼ cjd−1; 0¡d¡ 1=2; c 	= 0: (3.35)

It has been shown that (essentially because of (3.35)) covariances of the squares r2k
decay hyperbolically and are not absolutely summable, and a functional limit theorem
holds. More precisely, GRS (2000) proved that under assumption

L(E040)
1=2

∞∑
j=1

62j ¡ 1; (3.36)

(where L = 7 if the 0k are Gaussian and L = 11 in other cases), there is a stationary
solution to Eqs. (3.33), (3.35) such that the squares Xk = r2k satisfy

Cov(Xk; X0) ∼ Ck2d−1; (3.37)

where C is a positive constant, and convergence (3.6) holds.
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Hence, the squares r2k of LARCH(∞) model (3.33), (3.35) possess two essential
features of long memory: hyperbolically decaying non-summable covariances and at-
traction to the fractional Brownian motion, and satisfy Assumption L′. For brevity,
we shall call the model Xk = r2k (3.33), satisfying (3.35) and (3.36), LM LARCH(∞)
model.
Although we expect that in LM LARCH(∞) case Assumption L holds as well, the

veri6cation of cumulant condition (3.7) remains an open technical problem.
In simulations in Section 4, we use for the LM LARCH(∞) model the coeIcients

6j which satisfy

6j = 60cj; 1 +
∞∑
j=1

cjLj = (1− L)−d 1− 7L1− 8L; |8|¡ 1: (3.38)

The constant 60 allows us to control the magnitude of the left-hand side of (3.36).
Estimation of the long memory parameter d in (3.33), (3.35) was discussed in

Giraitis et al. (2000b).

4. Empirical size and power

We present in this section the results of a simulation study examining the 6nite sam-
ple performance of the test procedures developed in the previous sections. As mentioned
in the Introduction, we see the main contribution of the present paper in advancing the
relevant theory, so the empirical experiments presented below will leave some open
questions which we hope will stimulate further research. Our goal is merely to form
some idea on how the V/S test compares to the R/S and KPSS tests. Realizations of
lengths N = 500 and N = 1000 are considered to make results comparable with those
of Lo (1991) and Lee and Schmidt (1996).
For the modi6ed R/S test the critical values can be found in Table 2 of Lo (1991),

for the KPSS test in Tables 3 and 4 of Kiefer (1959), whereas those for the V/S test
can be easily determined using a Kolmogorov statistic table, see Remark 3.3.
The tables below show the percentage of replications in which the rejection of a short

memory null hypothesis was observed. Thus if a data generating process belongs to
the null hypothesis, the tables show the empirical test sizes, and if it is a long memory
process the tables show the empirical power of the tests. Several moving average and
ARCH type models are considered. We 6rst discuss the simulation results for linear
and LARCH models, and 6nally we provide a simple application to exchange rate data.
For all simulations, the sequence of uniform deviates used for generating the error

terms succeeds Marsaglia’s (1996) DIEHARD tests.
I. Linear sequences. Table 1 presents the empirical sizes of the tests in AR(1)

model Xk = 8Xk−1 + 0k and shows their dependence on the bandwidth parameter q.
The 0k are iid standard normal variables and 8 takes values 0, 0:5, 0:8.
Table 1 shows that as parameter 8 increases, what leads the increase in short range

dependence, larger values of q must be used to obtain a correct size. Although in the
iid case reasonable empirical size is obtained for q = 0; : : : ; 10, for large values of 8
larger q should be used (206 q6 30).
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Table 1
Empirical test sizes (in %) of the modi6ed R/S, KPSS, V/S and Lobato–Robinson statistics (where mopt
denotes the optimal automatic bandwidth) of the sequence Xk under the null hypothesis of AR(1) model,
Xk = 8Xk−1 + 0k , with standard normal innovations 0k . Each row is based on 10 000 replications

8 = 0 8 = 0:5 8 = 0:8

N q 10% 5% 1% 10% 5% 1% 10% 5% 1%

Modi6ed R/S statistic
500 0 7.50 3.63 0.57 77.46 66.58 44.09 99.83 99.38 96.62

1 7.28 3.42 0.55 45.98 33.64 15.43 93.88 88.73 71.18
2 7.19 3.29 0.52 30.07 19.73 6.80 80.32 69.91 45.75
5 6.88 2.94 0.34 14.06 7.46 1.46 43.41 30.87 11.60
10 6.24 2.24 0.20 8.25 3.40 0.42 18.32 10.07 1.52
20 5.12 1.38 0.06 4.83 1.39 0.05 6.32 2.01 0.03
30 3.95 0.77 0.00 3.16 0.51 0.00 2.92 0.44 0.00

1000 0 7.96 3.92 0.71 81.21 70.90 48.68 99.96 99.74 98.19
1 7.94 3.86 0.68 50.39 37.45 17.99 95.99 92.40 80.06
2 7.92 3.85 0.63 33.67 22.47 8.37 85.23 76.61 55.61
5 7.61 3.74 0.62 16.64 9.31 2.51 50.28 37.55 18.41
10 7.19 3.50 0.47 10.62 5.03 0.94 24.54 15.19 4.49
20 6.88 2.93 0.31 7.42 3.36 0.35 10.98 5.22 0.76
30 6.34 2.42 0.19 6.06 2.42 0.18 7.19 2.95 0.24

KPSS statistic
500 0 10.09 4.97 0.96 50.26 36.91 19.24 93.07 85.83 66.20

1 10.00 4.99 0.96 31.73 21.51 8.60 73.88 60.61 37.74
2 9.93 4.96 0.93 24.28 14.76 5.21 58.60 44.59 24.94
5 9.71 5.00 0.83 15.99 8.90 2.40 35.46 24.11 9.97
10 9.82 4.90 0.80 12.82 6.78 1.36 22.72 13.35 4.31
20 9.71 4.56 0.54 11.27 5.38 0.85 15.04 8.12 1.61
30 9.68 4.24 0.50 10.59 4.91 0.56 13.03 6.43 0.90

1000 0 10.17 5.03 1.18 51.12 38.21 19.67 93.28 85.48 67.30
1 10.23 4.93 1.15 32.89 21.98 8.80 74.48 61.56 39.75
2 10.18 4.93 1.10 24.88 15.30 5.18 59.63 45.97 25.92
5 10.16 4.99 1.06 16.55 9.29 2.60 36.84 25.08 10.53
10 10.31 4.85 1.00 13.13 6.73 1.70 23.42 14.20 4.60
20 9.97 4.70 0.86 11.60 5.74 1.08 15.86 8.61 2.17
30 9.98 4.64 0.71 10.86 5.21 0.81 13.52 6.94 1.48

V/S statistic
500 0 10.09 4.88 0.99 68.62 55.67 33.09 99.44 98.08 91.14

1 9.81 4.74 0.94 43.09 30.81 13.82 90.85 83.23 63.10
2 9.59 4.70 0.89 31.33 20.48 6.97 77.95 65.73 42.63
5 9.64 4.55 0.72 18.58 10.47 2.61 48.51 35.27 15.92
10 9.29 4.24 0.54 13.59 6.64 1.08 28.51 17.56 5.00
20 8.35 3.44 0.24 10.43 4.44 0.41 16.89 7.92 1.06
30 7.46 2.56 0.08 8.94 3.07 0.13 12.62 4.86 0.24
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Table 1 (continued)

8 = 0 8 = 0:5 8 = 0:8

N q 10% 5% 1% 10% 5% 1% 10% 5% 1%

1000 0 10.02 5.07 1.01 69.22 56.23 33.64 99.29 98.29 92.26
1 9.90 4.94 0.96 43.60 31.14 13.84 91.83 84.02 64.35
2 9.88 4.91 0.97 31.62 20.38 7.72 78.70 66.90 43.86
5 9.84 5.05 0.90 18.85 11.06 3.04 49.22 36.01 17.09
10 9.94 4.87 0.82 14.19 7.46 1.61 28.94 18.56 6.17
20 9.64 4.49 0.54 11.83 5.73 0.91 17.73 10.06 2.16
30 9.38 3.97 0.38 10.69 4.94 0.55 14.46 7.26 1.02

Lobato–Robinson statistic
500 mopt 7.00 3.32 0.34 8.57 4.69 1.24 4.94 2.23 0.44
1000 mopt 7.85 3.52 0.60 10.05 5.62 1.47 6.87 3.55 0.87

If 8¿ 0:5, the tests with q=0; 1; 2; 5 have a strong bias towards rejecting the short
memory null hypothesis. Although for these small q all three tests perform poorly,
KPSS and V/S tests provide good approximations for large 206 q6 30. On the other
hand, Table 2 shows that q should not be chosen too large, since under the long
memory alternative, as q increases, these statistics have a strong bias towards accept-
ing the null hypothesis, i.e. show “spurious” short memory (for more discussion see
Teverovsky et al. (1999a, b).
Tables 1, 2 include also the empirical sizes and powers of the Lobato–Robinson test

for long memory which uses the automatic bandwidth selection procedure proposed by
Lobato and Robinson (1998) (see also Kirman and Teyssi.ere, 2002). We also compute
the Lobato–Robinson statistic on a grid of bandwidths as did Lobato and Savin (1998).
To save space, we only report the results for the automatic bandwidth.
We can see that this test performs remarkably well. It should be noted that for the

special case of the AR(1) model, Andrews (1991) proposed a formula for the optimal
choice of q. Lo (1991) showed that Andrews’ formula works well for the modi6ed
R/S test in cases of 8 = 0 (then optimal q = 0) and 8 = 0:5. We did not check how
the Andrews’ formula works for the KPSS and V/S tests, but it can be expected that
it will yield fairly good results. For example for N = 1000 and 8 = 0:5 it implies
q=14 whereas for N =1000 and 8=0:8, q=31. It can be gleaned from Table 1 that
these values of q would most likely yield empirical sizes comparable to those of the
Lobato–Robinson test.
Table 2 compares the power of the tests under three long memory alternatives. We

consider the fractional ARIMA(0; d; 0) model de6ned in (3.32) with d = 0:2, d = 0:3
and d=0:4. Unlike Lo (1991), who studied also anti-persistent alternatives (d¡ 0), we
are concerned only with long memory alternatives (d¿ 0), and thus consider one-sided
tests, so the critical value for a size / modi6ed R/S test is the (1 − /)th quantile of
the distribution tabulated in Table 2 of Lo (1991).
The V/S statistic has always higher power than the KPSS statistic, for all values

of q. For q = 0 and 1, the modi6ed R/S statistic is slightly more powerful than the
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Table 2
Empirical power of the tests (in %) based on the modi6ed R/S, KPSS, V/S and Lobato–Robinson (where
mopt denotes the “optimal” automatic bandwidth) statistics. The alternatives considered are FARIMA (0; d; 0)
with d=0:2, d=0:3 and d=0:4. Innovations 0k are standard normal. Each row is based on 10 000 replications

d = 0:2 d = 0:3 d = 0:4

N q 10% 5% 1% 10% 5% 1% 10% 5% 1%

Modi6ed R/S statistic
500 0 86.71 79.50 63.37 98.02 96.50 91.25 99.80 99.59 98.49

1 77.45 68.20 48.47 94.13 90.43 79.94 98.81 97.66 93.95
2 69.79 59.18 38.94 89.55 83.85 69.09 97.01 94.57 87.66
5 53.13 41.53 22.46 75.66 65.33 45.28 88.31 82.28 66.64
10 37.90 26.80 9.42 56.47 44.01 22.94 71.62 61.03 39.28
20 21.92 10.66 1.10 32.38 19.40 2.88 43.93 29.05 6.31
30 11.37 3.06 0.00 16.21 5.10 0.01 21.92 7.51 0.01

1000 0 93.81 89.99 78.94 99.72 99.32 97.41 100.00 99.98 99.92
1 88.20 82.28 66.04 98.53 97.02 92.26 99.92 99.78 98.92
2 83.34 75.23 56.67 96.54 93.98 86.61 99.58 99.05 96.83
5 70.29 59.51 39.25 89.63 83.97 69.62 96.98 94.48 87.65
10 55.77 43.97 24.63 77.41 67.94 48.37 89.81 84.12 69.71
20 39.21 27.28 9.78 57.67 45.82 24.30 72.73 62.50 41.32
30 29.02 17.54 3.95 44.31 30.62 10.14 57.63 45.15 20.91

KPSS statistic
500 0 70.90 59.71 40.11 91.44 85.22 69.77 98.13 96.01 89.00

1 62.77 51.13 31.73 84.65 75.36 57.86 94.82 90.31 78.92
2 57.79 45.30 26.88 78.75 68.38 49.95 91.17 84.73 70.42
5 47.95 35.57 18.93 66.78 55.09 36.43 81.01 72.04 53.49
10 39.28 27.67 12.99 55.35 43.27 24.72 69.41 57.78 38.42
20 31.01 20.38 7.08 43.44 31.46 14.34 55.04 42.58 23.95
30 26.43 16.43 4.36 36.77 25.10 8.89 46.85 34.44 15.16

1000 0 79.49 69.31 50.52 95.92 92.38 82.26 99.51 98.89 95.82
1 72.25 61.24 41.50 91.86 85.88 71.94 98.17 96.21 89.51
2 67.12 55.84 35.89 87.68 80.92 64.41 96.56 93.33 83.97
5 57.54 45.34 26.94 79.01 68.91 50.32 90.55 84.52 70.43
10 48.59 36.60 19.89 68.49 56.56 38.06 82.52 73.81 56.02
20 39.51 27.98 13.06 55.80 43.91 25.76 70.06 59.04 40.20
30 34.27 23.33 9.48 48.36 36.71 18.99 61.60 49.94 30.93

V/S statistic
500 0 83.91 75.38 57.56 97.05 94.74 86.86 99.59 99.13 97.03

1 75.79 65.84 45.93 93.28 88.45 75.58 98.50 96.91 91.88
2 69.90 58.86 38.44 89.23 82.51 66.54 96.69 94.06 85.74
5 58.04 45.68 26.45 78.07 68.27 49.01 90.01 84.04 68.61
10 46.82 34.86 16.05 65.24 53.74 32.60 78.74 69.40 49.65
20 35.71 23.08 6.23 50.06 36.91 14.79 62.64 50.10 26.04
30 28.97 15.85 1.90 40.07 26.09 5.06 51.66 36.86 10.45

1000 0 90.68 84.98 69.50 99.39 98.27 94.30 99.97 99.93 99.53
1 85.05 76.60 58.62 97.52 94.90 87.84 99.79 99.45 97.57
2 80.15 70.54 51.52 95.31 91.79 81.39 99.30 98.43 94.76
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Table 2 (continued)

d = 0:2 d = 0:3 d = 0:4

N q 10% 5% 1% 10% 5% 1% 10% 5% 1%

5 69.44 58.40 38.39 89.08 82.11 66.81 96.67 93.73 85.41
10 58.84 46.98 26.77 79.03 69.80 50.88 90.67 85.17 70.63
20 46.96 34.48 15.34 65.32 54.12 32.68 79.46 70.10 50.70
30 39.76 27.23 9.69 56.10 43.75 21.64 70.31 58.65 36.98

Lobato–Robinson statistic
500 mopt 88.58 82.89 68.18 95.89 93.39 84.91 97.14 95.16 88.80
1000 mopt 98.11 96.86 91.96 99.85 99.65 98.36 99.93 99.84 99.29

V/S, the V/S statistic having more power for q¿ 2. When q increases, the power
of the modi6ed R/S statistic deteriorates so much that it becomes less powerful than
the KPSS statistic. The relative changes of the power of the test as a function of
q is illustrated by the size–power curves, advocated by Davidson and MacKinnon
(1998) and given in Figs. 1 and 2. These curves plot the empirical distribution func-
tion of the P-values of the test under an alternative hypothesis against the empirical
distribution of the P-values of the tests under a null hypothesis, i.e., the power of
the test is adjusted to the correct size. The null hypothesis is chosen so that it is the
closest to the alternative hypothesis according to the Kullback–Leibler criterion. The
null and alternative hypotheses are plotted for a common value of q for the modi6ed R/S,
V/S and KPSS statistics, and a common bandwidth m for the Lobato–Robinson test.
When q = 0, the curve for the modi6ed R/S test is slightly above the KPSS. For

large q, the size–power curve of the modi6ed R/S test is below the curves of the other
tests.
The limited simulations presented here indicate that for linear models the V/S test

achieves a somewhat better balance of size and power than the R/S and KPSS tests;
R/S tests suHer from size distortion and small power for large q, and the KPSS test
has almost uniformly smaller power. The optimal range of the values of q to be used
in practice depends on 8 and N , and for the AR(1) model can be roughly determined
by Andrews’s formula. These simulations however do not show what happens for
other short memory models, so further empirical work is required. For the models
studied here, the Lobato–Robinson test distinguishes between short and long memory
hypotheses with very high precision and should clearly be used in conjunction with the
R/S-type tests. Note that, besides long memory testing, the KPSS and V/S tests might
be applicable to unit root testing (see Kwiatkowski et al., 1992; Lee and Amsler, 1997;
Shin and Schmidt, 1992).
II. LARCH sequences. Similarly as in the linear case, we 6rst compare the empirical

sizes of the three tests. We consider a short memory LARCH(1,0,1) model

�2k =

/+ ∞∑
j=1

6jrk−j

2 ; (4.1)

where the coeIcients 6j are given by (3.34). The innovations 0k are standard normal.
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Table 3
Empirical test sizes (in %) of the modi6ed R/S, KPSS and V/S statistics of the sequence r2k under the null
hypotheses of LARCH(1,0,1) model (4.1) with /= 0:1; 7= 0:2 and 8= 0:1, cf. (3.38). The 0k are standard
normal. Each row is based on 10 000 replications

Modi6ed R/S statistic KPSS statistic V/S statistic

N q 10% 5% 1% 10% 5% 1% 10% 5% 1%

500 0 7.54 3.52 0.58 10.91 5.51 1.17 10.64 5.40 1.03
1 6.83 3.00 0.48 10.63 5.31 1.04 10.18 4.99 0.89
2 6.37 2.90 0.42 10.45 5.20 1.03 9.86 4.80 0.85
5 5.97 2.47 0.30 10.28 5.02 0.94 9.53 4.55 0.75
10 5.33 1.95 0.19 10.10 4.89 0.84 9.28 4.15 0.52
20 4.20 1.26 0.04 10.01 4.75 0.66 8.51 3.33 0.23
30 3.20 0.62 0.00 9.95 4.43 0.04 7.67 2.49 0.02

1000 0 8.26 3.94 0.60 10.28 5.05 1.05 10.79 5.26 1.09
1 7.59 3.65 0.52 10.02 4.91 0.98 10.18 4.94 0.99
2 7.14 3.41 0.50 9.90 4.77 0.92 9.84 4.78 0.96
5 6.87 3.31 0.44 9.76 4.59 0.90 9.70 4.65 0.90
10 6.57 3.05 0.35 9.64 4.61 0.83 9.62 4.38 0.73
20 6.05 2.40 0.15 9.57 4.54 0.75 9.32 4.09 0.53
30 5.53 1.95 0.08 9.59 4.40 0.56 9.07 3.72 0.37

Empirical sizes are reported in Table 3. Both V/S and KPSS tests have good size
for the LARCH(1,0,1) null hypothesis, for q= 0; : : : ; 10 even when N = 500. There is
a slight size distortion for the modi6ed R/S test.
Tables 4 compares the power of the tests under the long memory alternatives

de6ned in Section 3. The coeIcients 6j in (3.33) are given by (3.38). Recall that for
the Gaussian 0k , the theory of testing under the alternative requires that

7(E040)
1=2

∞∑
j=1

62j ¡ 1 (4.2)

(see (3.36)). Assumption (4.2) is only suIcient and the bound 1 is not the smallest
possible. We set 60 = 1 in (3.38). (If, for instance, 60 is chosen so that the left-hand
side of (4.2) is 0.99 then for N = 500 and signi6cance level 10% the power of the
test based on the V/S statistic is 25.25% if d= 0:2, 44.73% if d= 0:3 and 60.84% if
d= 0:4).
According to the Kullback–Leibler criterion, the LARCH(1,0,1) is the process sat-

isfying the null hypothesis which is the closest to the long memory LARCH(1; d; 1)
alternative. Size power curves for the LARCH(1,0,1)–LARCH(1; d; 1) models are pre-
sented in Fig. 2.
The simulations indicate again that the V/S test may be an attractive alternative to

the R/S and KPSS tests as its power is some 10–15% higher than that of the KPSS
test and does not vary as rapidly with q as for the R/S test. Table 4 shows that in
the LARCH setting the long memory can be fairly reliably detected for sample size
N = 1000.
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Table 4
Empirical power (in %) of the tests based on the modi6ed R/S, the KPSS and the V/S statistics. The
alternatives considered are the squares r2k of the model (3.33), i.e., LARCH(1; d; 1) with the coeIcients 6j
of the form (3.38) with 60 = 1, /= 0:1, 7= 0:2, 8= 0:1, d= 0:2, d= 0:3 and d= 0:4 and standard normal
innovations 0k . Each row is based on 10 000 replications

d = 0:2 d = 0:3 d = 0:4

N q 10% 5% 1% 10% 5% 1% 10% 5% 1%

Modi6ed R/S statistic
500 0 72.10 62.55 43.57 79.23 71.73 54.72 74.44 65.70 48.29

1 62.89 52.16 32.16 69.60 59.78 40.48 62.99 52.58 33.60
2 55.97 44.12 24.71 61.76 50.67 30.40 53.45 42.72 23.80
5 41.50 29.37 11.87 44.39 32.61 13.91 35.79 24.55 8.77
10 27.18 16.53 3.57 27.64 16.25 3.75 20.06 10.66 2.09
20 12.84 4.85 0.15 10.73 4.17 0.11 6.74 2.27 0.05
30 5.56 0.93 0.00 4.07 0.61 0.00 2.26 0.32 0.00

1000 0 86.73 80.31 65.69 90.67 85.84 73.39 84.45 78.38 64.16
1 79.78 72.20 54.25 84.21 77.21 61.78 76.12 67.61 50.41
2 74.60 65.18 45.63 78.32 69.70 51.83 68.53 58.87 40.77
5 61.89 50.60 29.86 64.31 53.41 33.22 52.47 40.96 22.24
10 48.22 35.51 16.44 48.50 36.12 17.17 36.17 24.58 9.89
20 31.43 19.20 5.87 29.32 17.80 5.09 19.06 10.99 2.28
30 20.98 11.20 1.83 18.04 9.35 1.51 11.44 4.68 0.62

KPSS statistic
500 0 64.49 53.42 33.95 74.59 64.10 45.04 73.97 62.98 43.14

1 58.26 46.39 28.07 67.62 56.02 36.88 66.53 54.41 33.98
2 54.11 41.98 23.75 62.88 50.55 31.33 60.85 48.16 28.07
5 46.12 33.96 16.98 52.90 40.51 21.83 50.61 37.75 18.91
10 39.01 26.88 11.59 44.21 31.97 14.12 42.29 28.90 11.71
20 31.49 20.08 6.23 35.85 23.16 7.14 33.90 20.67 5.51
30 27.69 15.98 3.49 31.11 17.96 3.82 29.19 16.02 2.56

1000 0 75.27 64.97 46.56 83.67 75.05 57.80 81.26 71.73 53.42
1 69.48 58.08 39.83 77.77 67.63 48.96 74.72 64.08 43.91
2 65.15 53.75 34.77 73.16 61.93 43.07 69.63 58.06 37.47
5 56.88 44.98 26.73 63.88 51.91 31.99 59.74 46.79 26.90
10 49.14 37.16 19.45 54.94 42.26 22.94 50.71 37.43 18.05
20 40.48 28.62 12.81 44.76 32.00 14.47 41.28 28.03 10.67
30 35.49 24.00 9.09 39.06 26.68 9.89 36.12 22.74 7.17

V/S statistic
500 0 75.86 66.12 47.51 85.01 77.76 60.91 84.78 76.65 58.06

1 69.57 58.72 39.25 79.06 69.82 49.73 77.82 67.43 46.44
2 64.73 53.49 32.99 73.88 63.33 42.28 71.79 59.95 37.38
5 55.34 43.17 21.38 63.25 50.52 26.96 59.49 45.27 21.78
10 45.98 32.07 11.76 51.66 36.59 13.86 46.75 31.03 9.81
20 33.90 19.46 3.28 36.78 21.31 3.22 31.46 15.81 1.93
30 25.93 11.69 0.58 27.49 12.03 0.56 22.23 8.34 0.19
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Table 4 (continued)

d = 0:2 d = 0:3 d = 0:4

N q 10% 5% 1% 10% 5% 1% 10% 5% 1%

1000 0 86.45 79.60 64.03 92.96 87.83 74.90 90.98 84.69 70.43
1 81.43 73.17 55.03 88.55 81.67 65.86 85.70 77.66 59.94
2 77.49 68.28 48.78 84.55 76.86 58.71 81.19 71.56 51.68
5 69.37 57.57 36.91 76.15 65.46 44.24 70.62 59.03 36.09
10 59.79 47.25 25.75 66.23 52.88 30.35 59.97 45.87 21.77
20 48.15 34.81 14.44 53.08 38.46 15.20 46.44 30.34 9.97
30 40.87 26.85 8.27 44.26 28.71 8.15 37.49 21.29 4.58

Lobato–Robinson statistic
500 mopt 76.45 69.53 55.31 80.25 74.00 61.76 76.44 69.17 56.58
1000 mopt 94.74 91.92 84.16 93.95 91.20 84.71 89.46 85.40 77.08

Interestingly, note from Table 4 that the power of all these tests decreases for large
d, i.e., when the suIcient condition (4.2) is not satis6ed, meaning that the series is
apparently non-stationary or close to non-stationarity. This is in line with Vogelsang
(1999), among others, who pointed out the behavior of the sample variance as a primary
source of this non-monotonicity.
To simulate the series required to obtain Table 4 we used a pre-sample of 20000

observations which were recursively used for initiating the process. The fractional 6lter
in (3.33) was truncated at the order 2000. Note that Gaussian linear fractionally inte-
grated processes can be simulated exactly (without any truncation) by applying a form
of a prediction error decomposition known also as the Durbin–Levinson algorithm,
which was used in simulation of the FARIMA(0; d; 0) series.
III. Application to exchange rate data. We illustrate the theory and simulations

by applying the tests to the squared returns r2k of the exchange rate data. To make
the results comparable with the simulations, we divide a series of four thousand daily
returns on the Pound/Dollar exchange rate into four blocks of equal length as shown
in Fig. 3. The corresponding P-values are displayed in Table 5. The evidence against
the null hypothesis in favor of long memory alternative is strong for all blocks except
perhaps the second one. The P-values, say, for the 6rst block, are so small, that one
is inclined to believe that the data exhibit some other forms of departure from the null
than the alternative discussed in the present paper. This may be due to some form of
non-stationarity, e.g. change in parameters of the conditional heteroskedastic process,
or to probability tails of the marginal distributions of the r2k which are heavier than
those permitted by condition (4.2). In fact, the series of squared returns share the
main second moments feature of long memory processes: a hyperbolic rate of decay of
the autocorrelation function (and a pole in the periodogram near the zero frequency).
The local Whittle estimator of the long memory parameter developed by Robinson
(1995) yields d̂=0:3627. However, Fig. 3 shows that such series do not display local
spurious trends which are common in linear FARIMA-type models with such degree
of persistence.
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Fig. 3. Squares of returns on daily Pound/Dollar exchange rate. Four thousand observations ending 21 January
1997.

Table 5
P-values of the tests based on the modi6ed R/S statistic, the KPSS statistic and the V/S statistics. For each
value of q the four entries corresponding to a statistic give P-values for the four blocks shown in Fig. 3.
For all blocks, except perhaps the second one, there is strong evidence against the null hypothesis

Modi6ed R/S KPSS V/S

q = 2 0.000 0.000 0.000
0.017 0.009 0.023
0.001 0.003 0.001
0.000 0.000 0.000

q = 5 0.001 0.000 0.000
0.074 0.024 0.067
0.015 0.014 0.008
0.001 0.000 0.001

q = 11 0.017 0.002 0.001
0.148 0.042 0.117
0.055 0.032 0.024
0.015 0.000 0.009

It is seen again that the R/S test is more sensitive to the choice of q and for
large q appears to have a large probability of type II error. This accords with the
6ndings of Teverovsky et al. (1999a, b) who looked at probabilities of type II error
for linear sequences like fractional ARIMA and fractional Brownian motion. Note also
that unlike in Table 4 the P-values for the V/S test are in most cases larger than
for the KPSS test. This suggests again that the departure from the null hypothesis in
the considered example cannot be exclusively explained by the long memory LARCH
model considered in this paper.
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5. Final comments

The goal of our paper was to introduce the new V/S test and to develop the theory
of long memory testing based on the V/S and related statistics (KPSS and R/S). The
results were derived for general classes of stationary processes satisfying Assumptions
S or L. Special classes of processes which satisfy these assumptions (linear sequences
and linear ARCH) were considered. In particular, Assumption S on the 4th order cu-
mulants is well adjusted to the linear and LARCH processes and naturally satis6ed
without any additional restrictions besides the existence of corresponding 4th and 8th
moments. Hence it may be expected that these tests are robust to the structure of the
processes and applicable to a large class of sequences including mixing sequences. In
special cases, the assumptions formulated in terms of cumulants might be easier to
check than mixing assumptions, and assumptions of this type are widely used in time
series analysis (see, e.g. Anderson, 1971; Brillinger, 1981). Even though mixing as-
sumptions can be successfully used as well, it may be diIcult to provide non-restrictive
conditions for their validity in speci6c classes of processes. Note that to cover all pos-
sible memory scenarios we used the type of assumptions nesting both long and short
memory sequences. Mixing is well adjusted to the weak dependence but it might not
be suitable to characterize the long range dependence.
Although in special cases of linear processes and even ARCH processes the Lagrange

multiplier type test of Lobato and Robinson (1998) based on the semiparametric esti-
mation of the long memory parameter performs very well (see Lobato and Robinson,
1998; Kirman and Teyssi.ere, 2002), its theoretical and empirical properties, especially
the automatic bandwidth selection, requires additional investigation and, we believe that
in a broad class of the null and alternative hypotheses, without assuming any particular
structure of observations except stationarity, the R/S, KPSS, V/S-type tests are most
useful.
The problem of choosing an optimal value of q is not yet solved. In the semipara-

metric estimation (linear models), a similar problem is the choice of a bandwidth m.
The selection of the optimal q requires further empirical and theoretical work, but even
without knowing the optimal value of q, if such exists at all, it might be useful to
apply several tests and consider a range of values of q taking into account the length
of the series.
Finally, the assumptions implying existence of the stationary solution to LARCH

equations require relatively small 6j. Since these assumptions are not necessary, the
case of “violated” theoretical condition (4.2) considered in simulations (Table 4) is
also of interest.
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Appendix A.

Proof of Theorem 3.1. The proofs in cases (i) and (ii) follow the same lines. Recall
the de6nition of the sample covariances �̂j given in (2.3) and introduce the quantities

�̃j =
1
N

N−|j|∑
i=1

(Xi − �)(Xi+|j| − �); |j|¡N:

De6ne also

Zk;l :=
l∑
i=k

(Xi − �):

Then

�̂j − �̃j =
(
1− |j|

N

)
( NXN − �)2 − N−1( NXN − �)(Z1;N−|j| + Z|j|+1;N )= : <j:

Write ŝ2N;q = vN;1 + vN;2, where

vN;1 =
∑
|j|6q

(
1− |j|

q+ 1

)
�̃j ; vN;2 =

∑
|j|6q

(
1− |j

q+ 1

)
<j:

In case (i) set d=0 and de6ne �2∗=�
2; in case (ii) de6ne �2∗= c

2
d. It remains to show

that

q−2dvN;1
P→�2∗; (A.1)

and

q−2dvN;2
P→0: (A.2)

To obtain (A.2) notice that

E|vN;2|6
∑
|j|6q

E|<j|

6
∑
|j|6q

E( NXN − �)2 + N−1(Var NXN )1=2

∑
|j|6q

((EZ21;N−|j|)
1=2 + (EZ2|j|+1;N )

1=2): (A.3)

Since EZ2k+1; l =
∑l

i; i′=k+1 �i−i′ 6C (l− k)1+2d and Var NXN = N−2EZ21;N 6C N−1+2d

we obtain that (A.3) does not exceed

C
∑
|j|6q

[N−1+2d + N−1N−1=2+d(N − |j|)1=2+d]6C(q=N )1−2dq2d = o(q2d):

To prove (A.1) note 6rst that in case (i)

EvN;1 =
∑
|j|6q

(
1− |j|

q+ 1

)(
1− |j|

N

)
�j →

∞∑
j=−∞

�j ≡ �2 (N → ∞)
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by (3.1). In case (ii)

EvN;1 =
∑
|j|6q

(
1− |j|

q+ 1

)(
1− |j|

N

)
�j ∼

∑
|j|6q

(
1− |j|

q+ 1

)
�j

= (q+ 1)−1
q+1∑
j; j′=1

�j−j′ ∼ q2dCd

∫ 1

0

∫ 1

0
|x − y|2d−1 dx dy = c2dq2d:

Thus, (A.1) follows if we show that

E(vN;1 − EvN;1)2 = o(q2d):

Clearly

E(vN;1 − EvN;1)2

=
∑

|j|;|j′|6q

(
1− |j|

q+ 1

)(
1− |j′|

q+ 1

)
Cov(�̃j ; �̃j′)

6
∑

|j|;|j′|6q
|Cov(�̃j ; �̃j′)|: (A.4)

Rewrite

Cov(�̃j ; �̃j′) = N−2
N−|j|∑
i=1

N−|j′|∑
i′=1

Cov((Xi − �)(Xi+|j| − �); (Xi′ − �)(Xi′+|j′| − �)):

Since

Cov((Xi − �)(Xi+|j| − �); (Xi′ − �)(Xi′+|j′| − �))
=Cum(Xi; Xi+|j|; Xi′ ; Xi′+|j′|) + �i−i′�i−i′+|j|−|j′| + �i−i′−|j′|�i−i′+|j|; (A.5)

we obtain from (A.4) and (A.5)

E(vN;1 − EvN;1)2

6N−2 ∑
|j|;|j′|6q

N∑
i=1

N∑
i′=1

|Cum(Xi; Xi+|j|; Xi′ ; Xi′+|j′|)|

+N−2 ∑
|j|;|j′|6q

N∑
i=1

N∑
i′=1

(|�i−i′�i−i′+|j|−|j′||

+ |�i−i′−|j′|�i−i′+|j||)= : iN;1 + iN;2:

By (3.1) in case (i) and by (3.5) in case (ii) it follows that
∑

|i|62N |�i|6CN 2d.
(Recall that in short memory case d= 0.) Therefore

iN;26 2N−2∑
|j|6q

N∑
i=1

∑
|i′|;|j′|62N

|�i′ | |�j′ |6C(q=N )1−2dq2d = o(q2d):
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For the term iN;1, using the property of cumulants

Cum(X0; X|j|; Xi′−i ; Xi′−i+|j′|) = Cum(X0; X|j|; Xi′−i ; Xi′−i+|j′|);

we get

iN;1 = N−2 ∑
|j|6q

N∑
i′=1

 N∑
i=1

∑
|j′|6q

|Cum(X0; X|j|; Xi′−i ; Xi′−i+|j′|)|


6N−1 ∑
|j|6q

 2N∑
i; j′=−2N

|Cum(X0; X|j|; Xi; Xj′)|


6C(q=N )1−2dq2d = o(q2d); (A.6)

by assumptions (3.3) and (3.7).
We now turn to the proof of part (iii). Since ŝ2N;q is non-negative and q=N → 0, it

is enough to verify that Eŝ2N;q6Cq2d. We have

Eŝ2N;q =
∑
|j|6q

(
1− |j|

q+ 1

)
E�̂j6

∑
|j|6q

|E�̂j − �j|+
∑
|j|6q

|�j|:

Using relation (3.5), it is not diIcult to verify that (see, for example, relation (8) in
Hosking (1996) or proof of relation (A.2))

|E�̂j − �j|6CN 2d−1; (A.7)

where C¿ 0. Thus, by (A.7) and (3.5)

Eŝ2N;q6C1
∑
|j|6q

N 2d−1 + C2
∑
|j|6q

j2d−16C3q2d;

where we used the assumption 0¡ 2d¡ 1.

References

Anderson, T.W., 1971. The Statistical Analysis of Time Series. Wiley, New York.
Andrews, D.W.K., 1991. Heteroscedasticity and autocorrelation consistent covariance estimation.
Econometrica 59, 817–858.

Baillie, R.T., Bollerslev, T., Mikkelsen, H.O., 1996. Fractionally integrated generalized autoregressive
conditional heteroskedasticity. Journal of Econometrics 74, 3–30.

Billingsley, P., 1968. Convergence of Probability Measures. Wiley, New York.
Breidt, F.J., Crato, N., de Lima, P., 1998. On the detection and estimation of long memory in stochastic
volatility. Journal of Econometrics 83, 325–348.

Brillinger, D.R., 1981. Time Series: Data Analysis and Theory. Holt, Rinehart and Winston, New York.
Campbell, J.Y., Lo, A.W., MacKinlay, A.C., 1997. The Econometrics of Financial Markets. Princeton
University Press, Princeton.

Cheung, Y.W., 1993a. Long memory in foreign-exchange rates. Journal of Business and Economic Statistics
11, 93–101.

Cheung, Y.W., 1993b. Tests for fractional integration: A Monte Carlo investigation. Journal of Time Series
Analysis 14, 331–345.



L. Giraitis et al. / Journal of Econometrics 112 (2003) 265–294 293

Cheung, Y.W., Lai, K.S., 1993. Do gold market returns have long memory? The Financial Review 28,
181–202.

Crato, N., de Lima, P.J.F., 1994. Long-range dependence in the conditional variance of stock returns.
Economics Letters 45, 281–285.

Davidson, J., 2002. Establishing conditions for the functional central limit theorem in nonlinear and
semiparametric time series processes. Journal of Econometrics 106, 243–269.

Davidson, J., de Jong, R., 2000. Consistency of kernel estimators of heteroscedastic and autocorrelated
covariance matrices. Econometrica 68, 407–423.

Davidson, R., MacKinnon, J.G., 1998. Graphical methods for investigating the size and power of hypothesis
tests. The Manchester School 66, 1–26.

Davydov, Y.A., 1970. The invariance principle for stationary processes. Theory of Probability and its
Applications 15, 487–498.

Ding, Z., Granger, C.W.J., 1996. Modeling volatility persistence of speculative returns: a new approach.
Journal of Econometrics 73, 185–215.

Durbin, J., 1973. Distribution Theory for Tests Based on the Sample Distribution Function. Society for
Industrial and Applied Mathematics, Philadelphia.

Feller, W., 1951. The asymptotic distribution of the range of sums of independent random variables. Annals
of Mathematical Statistics 22, 427–432.

Geweke, J., Porter-Hudak, S., 1983. The estimation and application of long memory time models. Journal
of Time Series Analysis 4, 221–238.

Giraitis, L., Kokoszka, P., Leipus, R., 2000a. Stationary ARCH models: dependence structure and central
limit theorem. Econometric Theory 16, 3–22.

Giraitis, L., Kokoszka, P., Leipus, R., Teyssi.ere, G., 2000b. Semiparametric estimation of the intensity of
long memory in conditional heteroskedasticity. Statistical Inference for Stochastic Processes 3, 113–128.

Giraitis, L., Robinson, P., Surgailis, D., 2000c. A model for long memory conditional heteroskedasticity.
Annals of Applied Probability 10, 1002–1024.

Giraitis, L., Kokoszka, P., Leipus, R., 2001. Testing for long memory in the presence of a general trend.
Journal of Applied Probability 38, 1033–1054.

Goetzmann, W.N., 1993. Patterns in three centuries of stock market prices. Journal of Business 66,
249–270.

Gourieroux, C., Monfort, A., 1997. Time Series and Dynamic Models. Cambridge University Press,
Cambridge.

Hauser, M.A., 1997. Semiparametric and nonparametric testing for long memory: a Monte Carlo study.
Empirical Economics 22, 247–271.

Hosking, J.R.M., 1996. Asymptotic distributions of the sample mean, autocovariances, and autocorrelations
of long-memory time series. Journal of Econometrics 73, 261–284.

Hurst, H., 1951. Long term storage capacity of reservoirs. Transactions of the American Society of Civil
Engineers 116, 770–799.

Kiefer, J., 1959. K-sample analogues of the Kolmogorov–Smirnov and CramZer-v. Mises tests. Annals of
Mathematical Statistics 30, 420–447.

Kirman, A., Teyssi.ere, G., 2002. Microeconomic models for long-memory in the volatility of 6nancial time
series. Studies in Nonlinear Dynamics and Econometrics 5, 281–302.

Kuiper, N.H., 1960. Tests concerning random points on a circle. Proceedings of the Koninklijke Nederlandse
Akademie Van Wettenschappen, Series A 63, 38–47.

Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y., 1992. Testing the null hypothesis of stationarity
against the alternative of a unit root: how sure are we that economic time series have a unit root? Journal
of Econometrics 54, 159–178.

Lee, H.S., Amsler, C., 1997. Consistency of the KPSS unit root test against fractionally integrated alternative.
Economics Letters 55, 151–160.

Lee, D., Schmidt, P., 1996. On the power of the KPSS test of stationarity against fractionally-integrated
alternatives. Journal of Econometrics 73, 285–302.

Liu, Y.A., Pan, M.S., Hsueh, L.P., 1993. A modi6ed R/S analysis of long-term dependence in currency
futures prices. Journal of International Financial Markets, Institutions and Money 3, 97–113.

Lo, A., 1991. Long-term memory in stock market prices. Econometrica 59, 1279–1313.



294 L. Giraitis et al. / Journal of Econometrics 112 (2003) 265–294

Lobato, I., Robinson, P.M., 1998. A nonparametric test for I(0). Review of Economic Studies 68, 475–495.
Lobato, I., Savin, N.E., 1998. Real and spurious long-memory properties of stock-market data (with
comments). Journal of Business & Economic Statistics 16, 261–283.

Mandelbrot, B.B., 1972. Statistical methodology for non-periodic cycles: from the covariance to R/S analysis.
Annals of Economic and Social Measurement 1, 259–290.

Mandelbrot, B.B., 1975. Limit theorems of the self-normalized range for weakly and strongly dependent
processes. Zeitschrift f\ur Wahrschein lichkeitstheorie und Verwandte Gebiete 31, 271–285.

Mandelbrot, B.B., Taqqu, M.S., 1979. Robust R/S analysis of long run serial correlation. 42nd Session of
the International Statistical Institute, Manila, Book 2, pp. 69–99.

Mandelbrot, B.B., Wallis, J.M., 1969. Robustness of the rescaled range R/S in the measurement of noncyclic
long run statistical dependence. Water Resources Research 5, 967–988.

Marsaglia, G., 1996. DIEHARD: a battery of tests of randomness. http://stat.fsu.edu/pub/diehard.
Mikosch, T., StKaricKa, C., 1999. Change of structure in 6nancial time series, long range dependence and the
GARCH model. Preprint.

Robinson, P.M., 1991. Testing for strong serial correlation and dynamic conditional heteroskedasticity in
multiple regression. Journal of Econometrics 47, 67–84.

Robinson, P.M., 1995. Gaussian semiparametric estimation of long range dependence. The Annals of Statistics
23, 1630–1661.

Robinson, P.M., Henry, M., 1999. Long and short memory conditional heteroskedasticity in estimating the
memory parameter of levels. Econometric Theory 15, 299–336.

Robinson, P.M., ZaHaroni, P., 1998. Nonlinear time series with long memory: a model for stochastic volatility.
Journal of Statistical Planning and Inference 68, 359–371.

Rosenblatt, M., 1952. Limit theorems associated with variants of the von Mises statistic. Annals of
Mathematical Statistics 23, 617–623.

Shin, Y., Schmidt, P., 1992. The KPSS stationary test as a unit root test. Economics Letters 38, 387–505.
Teverovsky, V., Taqqu, M.S., Willinger, W., 1999a. A critical look at Lo’s modi6ed R/S statisitic. Journal
of Statistical Planning and Inference 80, 211–227.

Teverovsky, V., Taqqu, M.S., Willinger, W., 1999b. Stock market prices and long-range dependence. Finance
& Stochastics 3, 1–13.

Teyssi.ere, G., 2002. Interaction models for common long-range dependence in asset prices volatilities. Long
Range Dependent Stochastic Processes: Theory and Applications. Springer, Berlin, forthcoming.

Tsay, V.-S., 1998. On the power of Durbin–Watson statistic against fractionally integrated processes.
Econometric Reviews 17, 361–386.

Vogelsang, T.J., 1999. Sources of nonmonotonic power when testing for a shift in mean of a dynamic time
series. Journal of Econometrics 88, 283–299.

Watson, G.S., 1961. Goodness-of-6t tests on a circle. Biometrika 48, 109–114.

http://stat.fsu.edu/pub/diehard

	Rescaled variance and related tests for long memory in volatility and levels
	Introduction
	Test statistics
	Modified R/S statistic
	KPSS statistic
	V/S statistic

	Asymptotic theory
	Asymptotics for the modified R/S statistic
	Asymptotics for the KPSS statistic
	Asymptotics for the V/S statistic
	Asymptotic behavior of the variance estimator s2N,q

	Empirical size and power
	Final comments
	Acknowledgements
	Appendix A. 
	References


