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Abstract. The paper deals with the power and robustness of the R/S type tests under “contiguous”
alternatives. We briefly review some long memory models in levels and volatility, and describe the
R/S-type tests used to test for the presence of long memory. The empirical power of the tests is
investigated when replacing the fractional difference operator (1 − L)d by the operator (1 − rL)d ,
with r < 1 close to 1, in the FARIMA, LARCH and ARCH time series models. We also investigate
the Gegenbauer process with a pole of the spectral density at frequency close to zero.
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1. Introduction

Recently, much attention has been given to the analysis of long memory time se-
ries, see [3, 22]. The hypothesis of long memory was accepted in some data from
geophysics, economics, finance, and network traffic. This paper is concerned with
the power and robustness of the R/S-type tests under “contiguous” alternatives.

The most popular time series model leading to long memory is fractional ARMA.
We analyze two types of fractional time series models. Firstly we consider the
fractionally integrated, FI(d), processes characterized by the long memory parame-
ter d. These models can be nested in the class of the Gegenbauer processes, which
is characterized by two parameters: the memory parameter d and the frequency
ω ∈ [0, π) of its “persistent component” (see [1, 7, 13]). When ω = 0, this
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process reduces to the FI(2d) time series. We consider the Gegenbauer process
as a “contiguous alternative” for ω in a close neighborhood of zero.

The second class of processes defined using the fractional difference operator
(1 −L)d are the long memory ARCH processes, introduced by Robinson [21], and
the long memory linear ARCH (LARCH) process introduced by Giraitis, Robinson
and Surgailis [10]. We define as contiguous alternatives to these processes, the
ones obtained by replacing the fractional difference operator by the mixed operator
(1 − rL)d with r ∈ (0, 1), introduced by Giraitis, Kokoszka and Leipus [8] for the
class of ARCH(∞) processes.

The paper is organized as follows. We present in Section 2 the family of frac-
tional ARMA models. The long-range dependent volatility processes are reviewed
in Section 3. Section 4 introduces the test statistics. In Section 5 we provide some
Monte Carlo results on the power of these tests. The results are summarized in
Section 6.

2. Fractional ARMA models

Usually a long memory (LM) process Yt can be characterized by a single parameter
d ∈ (0, 1/2), called the degree of memory of the process, which controls the shape
of the spectrum of the process near the zero frequency and the hyperbolic rate of
decay of its autocorrelation function (ACF). More precisely, the spectral density,
f (λ), of the long memory process is approximated in the neighborhood of the zero
frequency by

f (λ) ∼ Cλ−2d as λ → 0+, 0 < C < ∞,

thus, f (λ) → ∞ as λ → 0+. (In the sequel, C stands for generic constant which
may change from line to line.) Under additional regularity assumptions of f the
ACF ρ(k) of LM process has the following asymptotic behavior:

ρ(k) ∼ Ck2d−1 as k → ∞.

As a consequence, for 0 < d < 1/2,
∑∞

k=−∞ |ρ(k)| = ∞. This property of
absolute nonsummability of autocorrelations is often considered as a definition of
long memory and is satisfied by the fractional ARMA models: the fractionally
integrated ARMA and the Gegenbauer process. They have an autoregressive (AR)
representation:

(1 − α(L))Yt = εt ,

where εt are i.i.d. N(0, σ 2) random variables and α(L) ≡ ∑∞
j=1 αjL

j has coeffi-
cients with the following rate of decay:

αj = O(j−1−d) as j → ∞.
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Recall that for the fractionally integrated, FI(d), or FARIMA(0, d, 0) process
α(L) = 1− (1−L)d , see [12, 14]. The ACF of a FI(d) process and its asymptotics
are given by

ρ(k) = �(1 − d)�(k + d)

�(d)�(k + 1 − d)
, ρ(k) ∼ �(1 − d)

�(d)
k2d−1 as k → ∞,

where �(·) denotes the gamma function. The spectral density of a FI(d) process is
equal to

f (λ) = σ 2

2π
(2|cosλ − 1|)−d , f (λ) ∼ σ 2

2π
λ−2d as λ → 0+,

which means that the FI(d) process is characterized by a “persistent component” at
frequency zero. The coefficients of the AR representation of the fractional Gaussian
noise FI(d) are given by

αj = −�(j − d)

�(−d)�(j + 1)
, αj ∼ −1

�(−d)
j−1−d as j → ∞.

The Gegenbauer process, suggested by Hosking in the conclusion of [14] and
studied independently in [1] and [13], depends on two parameters characterizing
a persistent component at frequency ω and the degree of memory d. The AR
representation of this process is

(1 − 2 cosω L + L2)dYt = εt , ω ∈ [0, π), εt ∼ N(0, σ 2).

If ω = 0, this process reduces to a FI(2d) process. The Gegenbauer process can be
interpreted as an AR(∞) process with coefficients

αj =
[j/2]∑
k=0

(−1)k+1�(−d + j − k)(2 cosω)j−2k

�(−d)�(k + 1)�(j − 2k + 1)
,

αj ∼ −cos ((j − d)ω + (dπ/2))

�(−d) sin−d(ω)

(
2

j

)1+d

as j → ∞,

where [·] indicates integer part. The process has an infinite MA representation:

Yt = (
1 − 2 cosωL + L2)−d

εt =
∞∑
j=0

cjεt−j , (2.1)

where the cj are orthogonal Gegenbauer polynomial coefficients, recursively de-
fined as:

c0 = 1, c1 = 2d cosω,

cj = 2 cosω

(
d − 1

j
+ 1

)
cj−1 −

(
2
d − 1

j
+ 1

)
cj−2.

Gray et al. [13] have demonstrated the following theorem on stationarity and
invertibility of this process:
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THEOREM 2.1. The Gegenbauer process Yt is stationary if either |cosω| < 1
and d < 1/2, or |cosω| = 1 and d < 1/4. The Gegenbauer process Yt is invertible
if either |cosω| < 1 and d > −1/2, or |cosω| = 1 and d > −1/4.

The spectral density of a Gegenbauer process is equal to

f (λ) = σ 2

2π
(2|cos λ − cosω|)−2d ,

f (λ) ∼ σ 2

2π
(2 sinω)−2d |λ − ω|−2d as λ → ω.

Thus, when d ∈ (0, 1), the spectral density has a pole at frequency ω, which means
that this process has a persistent component at frequency ω. The ACF behaves like
a cosine wave damped by a hyperbolically decaying sequence:

ρ(k) ∼ Ck2d−1 cos(kω) as k → ∞,

where the constant C depends on d and ω. Obviously the ρ(k) are summable but
their absolute values are not.

The authors of [14] and [12] proposed the generalization of the I(d) processes,
fractionally integrated ARMA, or FARIMA(p, d, q), processes defined as

!(L)(1 − L)d(Yt − µ) = #(L)εt , εt ∼ N(0, σ 2),

where !(L) and #(L) are the AR and MA lag polynomials of respective orders p
and q, which are co-prime on the set of polynomials with real coefficients and with
roots outside the unit disk, µ is the unknown mean of the process.

Similarly, Gray et al. [13] generalized the Gegenbauer process to the Fraction-
ally Generalized ARMA process, GARMA(p, d, q), defined as

!(L)(1 − 2 cosω L + L2)d(Yt − µ) = #(L)εt, εt ∼ N(0, σ 2).

3. Long-range dependent volatility processes

Robinson [21] introduced the class of ARCH(∞) processes defined as:

rt = σtεt , σ 2
t = ω + ψ(L)r2

t ,

where ω � 0, ψ(L) = ∑∞
i=1 ψiL

i is an infinite order lag polynomial with coeffi-
cients ψi which are nonnegative and have asymptotically the following hyperbolic
rate of decay

ψj ∼ Cj−1−d.

Particular parameterizations of the ARCH(∞) process are the LM-ARCH of [6]
and the so-called fractionally integrated GARCH (FIGARCH) model of [2]. Both
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these models involve the fractional difference operator (1 − L)d . In general, the
existence of stationary solution for the latter classes have not been theoretically es-
tablished, see [8, 11, 16]. However, if we replace the fractional difference operator
(1−L)d by the new operator (1− rL)d with r ∈ (0, 1), i.e. ψ(L) = (1− rL)d , the
modified fractionally integrated GARCH does admit a stationary solution, see [8].
With this operator which mixes hyperbolic and exponential decay, we define a
contiguous alternative, called the semi-long memory ARCH, semi LM-ARCH. The
ACF of this process satisfies

ρ(k) ∼ Ckd−1rk.

[23] considered several nonlinear long memory ARCH processes, and their
semi-long memory versions. A process of interest is the semi-long memory non-
linear GARCH process defined as

σ δ
t = ω + βσ δ

t−1 + (
1 − βL − (1 − φL) (1 − rL)d

)|εt + γ σt |δ.
In Table I we present the estimated parameters of a semi LM NGARCH model for
the long series of S&P 500 index (period 1929–1994) by using the pseudo maxi-
mum likelihood estimator and the assumption that the innovations are t-distributed
with η degrees of freedom. We assume that the conditional mean is a MA(1)
process accounting for the mild correlation caused by differences in closing times,
i.e.,

rt = µ + θεt−1 + εt , εt ∼ t (η).

Thus, the BIC restrictive criterion would favor the semi-long memory model,
although this model has an additional parameter.

Table I. Estimation results (S.E. in parentheses)

Parameters Estimated parameters Estimated parameters, with r = 1

µ 0.0387(0.0058) 0.0416(0.0058)

θ 0.1409(0.0084) 0.1423(0.0086)

ω 0.0244(0.0058) 0.0305(0.0062)

β 0.3753(0.0744) 0.5676(0.0330)

d 0.2958(0.0299) 0.3719(0.0245)

r 0.9981(0.0005) 1.0000

φ 0.2022(0.0559) 0.2364(0.0343)

γ −0.7102(0.0405) −0.6038(0.0271)

δ 1.5413(0.0647) 1.3588(0.0498)

η 6.6380(0.3544) 6.5206(0.3467)

BIC −41890.50 −41959.44
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Note that a short memory alternative, but not contiguous, is obtained when
d = 0. If ψ(L) is a p-order lag-polynomial, the process is a ARCH(p) process,
while if ψ(L) is defined as the ratio of two finite order lag polynomials without
common roots, the process is a GARCH one.

The long memory linear ARCH, henceforth LM-LARCH, process developed
in [10], is defined as

rt = σtεt , σt = α +
∞∑
j=1

ψjrt−j , (3.1)

where the ψj have the rate of decay ψj ∼ Cjd−1, with d ∈ (0, 1/2). [10] have
shown that under the condition

L(Eε4
0)

1/2
∞∑
j=1

ψ2
j < 1, (3.2)

where L = 7 for the Gaussian case and L = 11 in other cases, there exist a
stationary solution to Equation (3.1), such that the sequence of squares {r2

t }∞
t=1 has

a covariance function the rate of decay of which is ρ(k) ∼ L(k)k2d−1 as k → ∞,
where L(k) is a slowly varying function. The coefficients ψj can be the ones of the
MA form of the FARIMA process, i.e.,

ψ(L) = 1 +
∞∑
j=1

1 − θ(L)

1 − φ(L)
(1 − L)−d .

As before, we define a contiguous short-memory alternative by replacing the frac-
tional difference operator (1 − L)d by the mixed operator (1 − rL)d . However,
unlike for the LM-ARCH case, the limit process when r = 1 does exist.

4. R/S-Type Tests

[19] proposed a semi-parametric test for the existence of long memory based on
Hurst’s [15] statistic, with a different normalization for making it more robust to
some form of short-range dependence. This statistic is based on the range of the
partial sum process Sk = ∑k

j=1(Yj − Ȳn) and is defined by

R/S(q) = max1�k�n Sk − min1�k�n Sk

σ̂ (q)
,

where σ̂ (q) is defined in (4.1) below, Ȳn = n−1∑n
i=1 Yi . Kwiatkowski et al.

[17], henceforth KPSS, modified the R/S(q) statistic by replacing the range of
the partial sum process by its sample second moment:

KPSS(q) = 1

n2σ̂ 2(q)

n∑
k=1

S2
k .
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Originally, that was a test for I (0) against I (1) alternatives. [18] have shown that
the KPSS(q) test has power against I (d) process, with d > 0.

Giraitis et al. [9], have proposed a centering of the KPSS statistic, called the
rescaled variance test V/S, based on the sample variance of the partial sum process:

V/S(q) = n−1 V̂ar(S1, . . . , Sn)

σ̂ 2(q)
= 1

n2σ̂ 2(q)

[
n∑

k=1

S2
k − 1

n

(
n∑

k=1

Sk

)2]
.

Under the null hypothesis of no long memory, e.g., a I (0) process, short mem-
ory linear process, etc., these statistics have well-known asymptotic distributions,
which are functionals of the Brownian bridge, W 0(t) = W(t)− tW(1), W(t) being
the standard Wiener process.

R/S statistic: n−1/2 R/S(q) ⇒ max
0�t�1

W 0(t) − min
0�t�1

W 0(t);

KPSS statistic: KPSS(q) ⇒
∫ 1

0

(
W 0(t)

)2
dt;

V/S statistic: V/S(q) ⇒
∫ 1

0

(
W 0(t)

)2
dt −

(∫ 1

0
W 0(t) dt

)2

.

The distribution functions of these statistics are expressed in the form of se-
ries expansions which converge very quickly. Interested readers are referred to
Giraitis et al. [9] for more details.

The quantity σ̂ (q) in the above statistics is defined by

σ̂ 2(q) = γ̂0 + 2
q∑

i=1

ωi(q)γ̂i , ωi(q) = 1 − 1

q + 1
, (4.1)

which is the HAC variance estimator proposed in [20], the sample autocovariances
γ̂i at lag i account for the possible short-range dependence up to the qth order, with
weights ωi(q) corresponding to the Bartlett window. There is no selection rule for
choosing the order q, although q should be related to the sample size to satisfy
1/q + q/n → 0 as n → ∞. A standard choice is q = √

n. However, given that
the power of the tests tend to their size for that bandwidth, we consider alternative
selection rules such as the VARHAC estimator σ̂ 2

V , introduced in a multivariate
framework in [5]. The estimator σ̂ 2

V , is defined as

σ̂ 2
V = σ̂ 2

k

(1 −∑k
i=1 ζ̂i )

2
,

where σ̂ 2
k is the innovation covariance matrix of an AR model fitted on the series,

ζ̂i are the estimated coefficients of the AR model, the order k of which is selected
by using either the Akaike (AIC) or the Schwarz (BIC) information criteria. We
denote these estimators by σ̂ 2

VBIC
and σ̂ 2

VAIC
.
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Since described tests are based on the typical shape of the spectrum near the
zero frequency of long memory series, they work well for the parametric class
of FI(d) processes, but are by construction invalid with the Gegenbauer process
if ω > 0, i.e., the process has a persistent component at a frequency strictly
larger than zero. Our purpose is to investigate the power of these tests against
contiguous alternatives: long memory models with a singularity at a frequency in a
very close positive neighborhood of the zero frequency, and the semi-long memory
FARIMA, LARCH, and ARCH, in which the fractional difference operator (1−L)d

is replaced by the operator (1 − rL)d with r < 1.

5. Monte Carlo Simulations

We consider the following data generating processes (DGP), which correspond to
the “almost” long memory alternatives. The null hypotheses are defined by setting
d = 0 for DGP A, B and C, and by DGP E for DGP D.

DGP A: the Gegenbauer process,

(1 − 2 cosωL + L2)dYt = εt , εt ∼ N(0, 1),

for several values of d and ω, i.e., d = 0.10, 0.15, 0.20, with cosω = 0.99999,
0.9999, 0.999, 0.99, 0.95, i.e., ω = 0.00447, 0.01414, 0.04472, 0.14154, 0.31756.

We also consider the cases of poles of the form ω = cn−1/2, for n = 100, 200,
. . . , 1000, and c = 1.

DGP B: the semi-long memory FARIMA(0, d, 0) process,

(1 − rL)dYt = εt , εt ∼ N(0, 1),

for several values of r = 0.999, 0.99, 0.9 and d = 0.20, 0.30, 0.40.

DGP C: a semi-long memory LARCH process,

rt = σtεt , εt ∼ N(0, 1), σt = α +
∞∑
j=1

ψjrt−j ,

where the coefficients ψj are the ones of the MA form of the FARIMA(1, d, 1)
process, where (1 − L)d is replaced by (1 − rL)d , i.e.

ψ(L) = 1 +
∞∑
j=1

1 − θL

1 − φL
(1 − rL)−d ,

for several values of r = 0.999, 0.99, 0.9 and d = 0.20, 0.30, 0.40.

DGP D: a semi-long memory ARCH process,

rt = σtεt , εt ∼ N(0, 1), σ 2
t = α +

∞∑
j=1

ψjr
2
t−j ,
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where the coefficients ψj are the ones of a FIGARCH process, in which the filter
(1 − L)d is replaced by (1 − rL)d , for several values of r = 0.999, 0.99, 0.9 and
d = 0.20, 0.30, 0.40.

DGP E: We consider three particular cases of short memory alternatives for DGP
D: an ARCH(1), an ARCH(2), and a GARCH(1, 1) process.

We considered here two sample sizes: n = 500, 1000. The expansion of frac-
tional filters is truncated at the order 2000. DGP A and DGP B use 2000 pre-sample
observations, i.e. the length of the fractional filter since these DGP have a MA form.
However, since DGP C and DGP D do not have such a MA form, we use 30000
pre-sample observations for avoiding dependence on initial conditions.

Given that the three statistics R/S,V/S and KPSS converge to random variables
with known analytical distribution functions, we can compute the P -values for
each simulation result. These statistics are computed for the HAC estimator σ̂ 2(q)

and several values of the autocorrelation order q = 0, 1, 2, 5, 10, 20, 30, and for
the estimators σ̂ 2

VBIC
and σ̂ 2

VAIC
.

6. Results

Given that we are considering a large number of DGP’s, presenting the whole set
of results with tables would be space consuming. Thus, we summarize some of
the results by using the size-power curves advocated in [4], which is the plot of
the empirical distribution, henceforth EDF, of the P -values of the DGP under the
alternative hypothesis against the EDF of the P -values of the DGP satisfying the
null hypothesis. (The whole set of results is available upon request.)

From the whole set of results, we conclude that the R/S statistic is more sen-
sitive than the KPSS and the V/S statistic to the choice of the variance estimator
σ̂ 2. For the ARCH(p) and GARCH(1, 1) null hypotheses, unlike the KPSS and the
V/S tests, this test does not have the correct size when using the σ̂ 2

VAIC
or σ̂ 2

VBIC

estimators. This sensitivity casts doubts on the existence of a reliable and robust
selection rule for the denominator of the R/S statistic.

For the semi-long memory LARCH, FARIMA, FIGARCH, the results do not
differ too much from the standard long memory case when r = 0.999. However,
when r is smaller, the power of the three tests declines, although for the semi-long
memory FARIMA process, for d = 0.20, 0.30, 0.40, and r = 0.9, the V/S and
R/S test do have some power for q = 0, 1, but no power at all for larger values of
q and for both estimators σ̂ 2

VBIC
and σ̂ 2

VAIC
, see Figure 1.

The three tests have less power for the semi-long memory volatility models.
For the LARCH case, if condition (3.2) is not satisfied, the test has more power for
small values of d, i.e., d = 0.20, the power increases for d = 0.30 and decreases
for d = 0.40. We meet here the issue of nonmonotonicity of the power function
when the process is not stationary or close to non stationarity, and the statistic
of interest depends on an estimator of the variance, see [24] and [9] for further
references.
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Figure 1. Semi FARIMA process: d = 0.30, σ̂ 2
VBIC

, n = 500, r = 0.99 (top) and r = 0.9
(bottom).
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Figure 2. Semi LARCH(1, d, 1) process: φ = 0.1, θ = 0.2, d = 0.30, σ̂ 2
VBIC

, n = 500,
r = 0.99 (top) and r = 0.9 (bottom).
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Figure 3. Gegenbauer process: d = 0.15, σ̂ 2
VBIC

, n = 500, cosω = 0.99999 (top) and
cosω = 0.9999 (bottom).
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Figure 4. Gegenbauer process: d = 0.15, σ̂ 2
VBIC

, n = 500, cosω = 0.99 (top) and
cosω = 0.95 (bottom).
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For the LARCH case, with condition (3.2) satisfied, the three tests do have little
power for d = 0.20. However, these tests detect the presence of long memory when
d � 0.30, for large samples, i.e., n = 1000, and r � 0.99. For r = 0.9, these tests
have little power, see Figure 2, even for d = 0.40.

Results are much more appealing for the semi-long memory FIGARCH, as all
the tests are able to detect the presence of long range dependence, even for r =
0.9, provided that q is not too large. In fact, for this class of process, using either
estimators σ̂ 2

VBIC
or σ̂ 2

VAIC
is not appropriate as the AIC and BIC criteria would

select a too large number of lags. The statistics appear to be more sensitive to q for
this class of processes than for the semi-long memory FARIMA process. This result
is of practical interest if we wish to detect the presence of long range dependence
in the series of squared returns of asset prices, and if we believe that the appropriate
model is a (semi) long memory ARCH, as seen in Section 3. In that case, we should
select q small, i.e., q � 5, for the HAC estimator.

For the Gegenbauer processes when cosω � 0.95, i.e., ω � 0.31756, the KPSS
and V/S statistics do not reliably detect the presence of long memory, the R/S

statistic has some power, however when q increases for the HAC estimator, and
for the estimator σ̂ 2

VBIC
, the R/S statistic becomes biased as well, i.e., its power

is lower than its size. However, when the poles are close to the zero frequency,
ω � 0.04472, and for q < 5, the three tests detect the presence of long memory.
For the case of poles of the form ω = cn−1/2, the tests detect the presence of long
memory for n = 100, but for q < 5. When the sample size increases, the tests have
obviously more power as the singularity becomes closer to zero.

For the LARCH case, we assume that condition (3.2) is satisfied.
The curves obtained with the HAC estimator σ 2(q) for q small, i.e., q = 0, 2, 5

are over these curves obtained with the σ̂ 2
VBIC

estimator. We consider small samples,
n = 500 and d = 0.30. For all DGP, the three statistics detect the presence of
long memory in the simulated series, except for the Gegenbauer process when
cosω = 0.99, see Figure 4, in that case the power of the tests are equal to their
size. When cosω = 0.95 (see Figure 4), the test is biased; even for the HAC
estimator with q = 2, the size power curve is slightly over the 45◦ line.

We also observe that for the figures reported here, the V/S test has more power
than the R/S test. This fact, which results from the lower sensitivity of the V/S

statistics to the variance estimator, advocates the use of this statistic.
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