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Abstract

We consider a class of microeconomic models with interacting agents which replicate the
main properties of asset prices time series: non-linearities in levels and common degree of
long-memory in the volatilities and co-volatilities of multivariate time series. For these mod-
els, long-range dependence in asset price volatility is the consequence of swings in opinions
and herding behavior of market participants, which generate switches in the heteroskedastic
structure of asset prices. Thus, the observed long-memory in asset prices volatility might be
the outcome of a change–point in the conditional variance process, a conclusion supported
by a wavelet analysis of the volatility series. This explains why volatility processes share
only the properties of the second moments of long-memory processes, but not the properties
of the first moments.
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1 Introduction: long-range dependence in finance

Asset prices time series are characterized by several features: leptokurtic distribution, nonlinear
variations, volatility clustering, unit roots in the conditional mean, and strong dependence in the
volatility.1 These empirical features have been documented in Mandelbrot (1963, 1997), Taylor
(1986), Dacorogna et al. (1993), Granger and Ding (1995, 1996), Beran and Ocker (2001) among
others.

Daily prices Pt are modeled by martingale processes, i.e., E(Pt+1|It) = Pt, where It denotes
the information set available at time t. This property is termed as ‘Efficient Market Hypothesis’,
the content of It defining the type of market efficiency considered, see e.g., Fama (1965). As a
consequence, the returns Rt = log(Pt/Pt−1) are uncorrelated and unpredictable.

However, the power transformation |Rt|δ displays strong dependence, the degree of which is
the highest for δ = 1. This empirical feature, termed as ‘Taylor effect’ Taylor (1986), motivated
the use of the class of long–memory volatility models introduced by Robinson (1991), and de-
veloped in Granger and Ding (1995), Ding and Granger (1996), Giraitis, Robinson and Surgailis
(2000) and other works.

This statistical univariate approach was incomplete, as a multivariate analysis, pioneered
by Teyssière (1997b, 1998), revealed that several time series share a common degree of strong
dependence in their conditional variances and covariances. This regularity suggested the presence
of a common structural model generating these features.

Furthermore, the series |Rt|δ differ from standard long-range dependent, henceforth LRD,
processes: while the autocorrelation function and the spectrum of the series |Rt|δ display a LRD-
type behavior, the series |Rt|δ are not trended unlike standard LRD processes, e.g., fractionally
integrated processes. Recent works, see e.g., Mikosch and Stărică (1999), Kokoszka and Leipus
(2000), Horváth, Kokoszka and Teyssière (2001), Kokoszka and Teyssière (2002), considered
the change–point problem for volatility processes, as the class of non-homogenous stochastic
variance processes is also able to match the empirical properties of asset prices returns.

These empirical results motivated further research for devising structural microeconomic
models explaining these features. Kirman and Teyssière (2001, 2002a, 2002b) produced several
models, based on microeconomic models with interacting agents, which generate these empirical
properties of asset prices.

This paper is organized as follows. Section 2 reviews some statistical methods used for testing
for long-range dependence and for the presence of a change–point in the volatility process. Sec-
tion 3 presents the class of microeconomic models generating the empirical property of common
long-range dependence in multivariate asset price volatility. Simulation results for our models
are given in section 4.

2 Long-range dependent vs. change–point processes

A stationary process Yt is called a stationary process with long-memory if its autocorrelation
function, henceforth ACF, ρ(k) has asymptotically the following hyperbolic rate of decay, see
Beran (1994), Granger (1980), Granger and Joyeux (1980), Hosking (1981), Robinson (1994):

ρ(k) ∼ L(k)k2d−1 as k → ∞, (1)

1The properties of high frequency data are more complex. However, we are presenting here equilibrium models
that are not appropriate for this type of data.
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where L(k) is a slowly varying function,2 and d ∈ (0, 1/2) is the long-memory parameter which
governs the slow rate of decay of the ACF and then parsimoniously summarizes the degree of
long-range dependence of the series. Equivalently, the spectrum f(λ) of a long-memory process
can be approximated in the neighborhood of the zero frequency as

f(λ) ∼ Gλ−2d, as λ → 0+, 0 < G < ∞. (2)

2.1 Statistical inference

Since the statistical characteristics of volatility processes are more complex than the ones of
standard parametric long-memory processes, we resort in this study to semiparametric statistical
tools which require mild assumptions on the process generating the data, henceforth DGP.

Several tests for stationarity against long-range dependent alternatives have been proposed
by Lo (1991), Kwiatkowski et al. (1992), and Giraitis et al. (2003, 2002). These statistics are
based on the partial sum process Sk =

∑k
t=1(Yt − Ȳ ) and the assumption that under the null

hypothesis of stationarity, the standardized partial sum process satisfies a functional central
limit theorem. Lo (1991) considered the standardized range of Sk, i.e.,

R/S(q) =
1

ŝT (q)

[

max
1≤k≤T

Sk − min
1≤k≤T

Sk

]

=
R̂T

ŝT (q)
. (3)

Kwiatkowski et al (1992) considered the standardized second moment of Sk:

KPSS(q) =
1

T 2ŝ2
T (q)

T
∑

k=1

S2
k =

M̂T

T ŝ2
T (q)

, (4)

while Giraitis et al. (2003) considered the standardized variance of Sk:

V/S(q) =
1

T 2ŝ2
T (q)





T
∑

k=1

S2
k − 1

T

(

T
∑

k=1

Sk

)2


 =
V̂T

T ŝ2
T (q)

, (5)

where ŝ2
T (q) is the heteroskedastic and autocorrelation consistent variance estimator, see Newey

and West (1987):

ŝ2
T (q) = T−1

T
∑

i=1

(Yi − Ȳ )2 + 2

q
∑

i=1

ωi(q)γ̂i with ωi(q) = 1 − 1

q + 1
, (6)

where the sample auto-covariances γ̂i at lag i account for the possible short-range dependence
up to the qth order.

Under the null hypothesis of no long-range dependence, the R/S statistic has the following
asymptotic distribution:

T− 1

2 R/S(q)
d→ max

0≤t≤1
W 0(t) − min

0≤t≤1
W 0(t),

2A function L(k), k ≥ 0, is called slowly varying function if L(λk)/L(k) → 1 as k → ∞, ∀λ > 0.
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i.e., the range of a Brownian bridge W 0(t) = W (t) − tW (1), on the unit interval, the KPSS
statistic

KPSS(q)
d→ UKPSS =

∫ 1

0

(

W 0(t)
)2

dt,

while the V/S statistic

V/S(q)
d→ UV/S =

∫ 1

0

(

W 0(t)
)2

dt −
(∫ 1

0
W 0(t)dt

)2

.

The V/S statistic is less sensitive to the choice of the truncation order q than the R/S statistic,
and is more powerful than the KPSS statistic. Furthermore, E(UKPSS) = 1/6, V (UKPSS) =
1/45, while E(UV/S) = 1/12 and V (UV/S) = 1/360. The smaller variance of the random variable
V/S might explain its superior power for small samples.

The R/S statistic has been used by Mandelbrot and his co-authors, see Mandelbrot and
Taqqu (1979), for estimating the degree of long-range dependence d. Define ŝ2

T = ŝ2
T (0), then

ŝ2
T → Var(Y ). Since

Sk =
k

∑

j=1

(Yj − EYj) −
k

T

T
∑

j=1

(Yj − EYj), (7)

and

1

T 1/2+d

[Tt]
∑

j=1

(Yj − EYj)
D[0,1]−→ C W1/2+d(t), (8)

where C is a positive constant, and
D[0,1]−→ means weak convergence in the space D[0, 1] endowed

with Skorokhod topology. Then

R̂T

T 1/2+d

d→ C

[

max
0≤t≤1

W 0
1/2+d(t) − min

0≤t≤1
W 0

1/2+d(t)

]

, (9)

W 0
1/2+d(t) being the fractional Brownian bridge, defined as

W 0
1/2+d(t) = W1/2+d(t) − tW1/2+d(1). (10)

Thus,

1

T 1/2+d

R̂T

ŝT

d→
C

[

max0≤t≤1 W 0
1/2+d(t) − min0≤t≤1 W 0

1/2+d(t)
]

Var(Y )1/2
, (11)

Equation (11) constitutes a theoretical foundation for the R/S estimator. Taking logarithms
of both sides yields the heuristic identity:

log
(

R̂T /ŝT

)

≈
(

1

2
+ d

)

log T + constant, as T → ∞, (12)

Denote d̂R/S =
(

log(R̂T /ŝT )/ log T
)

− 1/2, then d̂R/S − d = OP (1/ log T ). Thus, 1/2+ d can be

interpreted as the slope of a regression line of log(R̂T /ŝT ) on log T .
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Giraitis, Kokoszka, Leipus and Teyssière (2000) suggested to extend this principle to the
KPSS and the V/S statistics. By equation (8)

M̂T

T 1+2d

d→ C2

∫ 1

0

[

W 0
1/2+d(t)

]2
dt. (13)

Define d̂KPSS =
(

log(M̂
1/2
T /ŝT )/ log T

)

− 1/2, we get d̂KPSS − d = OP (1/ log T ). Thus, the

slope of the regression line of log
(

M̂
1/2
T /ŝT

)

on log T estimates d+1/2. Similarly, the regression

of log
(

V̂
1/2
T /ŝT

)

on log T estimates d + 1/2. Setting d̂V/S =
(

log(V̂
1/2
T /ŝT )/ log T

)

− 1/2, we

get d̂V/S − d = OP (1/ log T ).
The technical details of the implementation of these ‘pox-plot’ estimators are described in

Beran (1994) and Giraitis et al. (2000). These semiparametric estimators have a few drawbacks.
There is no formal asymptotic theory for them, and they have the slow rate of convergence of
order log(T ). For that reason, we complete the empirical study of the long-range dependent
properties of our microeconomic model by considering another semi-parametric estimator of the
degree of long-range dependence proposed by Robinson (1995), which is the discrete version of
the Whittle approximate maximum likelihood estimator in the spectral domain. This estimator,
suggested by Künsch (1987), is based on the mild assumption (2) of the spectrum f(λ) of a
long-memory process in the neighborhood of the zero frequency. The consequences of a mis-
specification of the functional form of the spectrum in the Whittle estimator are avoided with
this local approximation. After concentrating in G, the estimator is given by:

d̂ = arg min
d







ln





1

m

m
∑

j=1

I(λj)

λ−2d
j



 − 2d

m

m
∑

j=1

ln(λj)







, (14)

where I(λj) is the periodogram estimated for the range of Fourier frequencies λj = πj/T, j =
1, . . . , m ≪ [T/2], the bandwidth parameter m tends to infinity with T , but more slowly since
1/m + m/T → 0 as T → ∞. Under appropriate conditions, which include the existence of a
moving average representation and the differentiability of the spectrum near the zero frequency,
this estimator has the following distribution independent of the value of d:

√
m(d̂ − d) ∼ N (0, 1/4) . (15)

Furthermore, this estimator is robust to the presence of conditional heteroskedasticity of general
form, and an optimal bandwidth with the same robustness properties does exist under mild
assumptions, see Henry (2001).

2.2 Long-memory volatility models

The clustering of the variations of asset returns can be modeled by the class of Generalized
Autoregressive Conditional Heteroskedastic GARCH(1,1), processes, see Bollerslev (1986) and
Taylor (1986), defined as:

Rt = µ + εt, σ2
t = ω + βσ2

t−1 + αε2
t−1, εt ∼ N(0, σ2

t ), (16)
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with ω > 0, and α, β ≥ 0. It has been empirically found that for large samples the sum
of the estimated parameters α̂ + β̂ was close to one, the restricted model being an Integrated
GARCH(1,1), henceforth IGARCH(1,1) see Engle and Bollerslev (1986), defined as:

Rt = µ + εt, σ2
t = ω + βσ2

t−1 + (1 − β)ε2
t−1, εt ∼ N(0, σ2

t ), (17)

which can be written as an ARCH process

Rt = µ + εt, σ2
t = ω + ψ(L)ε2

t , εt ∼ N(0, σ2
t ), (18)

the coefficients of the lag polynomial ψ(L) sum to one but decrease exponentially to zero. For
the class of IGARCH processes, the shocks of the innovations εt on the level of the conditional
variance σ2

τ have a strong persistence ∀τ > t, which is not consistent with what is empirically
observed. Thus, the occurrence of IGARCH(1,1) processes can be considered as a large sample
artefact of a more complex phenomenon.

The IGARCH process is generalized with the class of long-memory ARCH, henceforth LM-
ARCH, processes introduced by Robinson (1991), and defined as:

Rt = µ + εt, σδ
t = ω + ψ(L) |εt|δ , εt ∼ N(0, σ2

t ), (19)

where ψ(L) =
∑∞

i=1 ψiL
i is an infinite order lag polynomial the coefficients of which are positive

and have asymptotically the following hyperbolic rate of decay ψj = O
(

j−(1+d)
)

, and δ > 0 is a
parameter. Unlike IGARCH(1,1) processes, the persistence of the variations of the innovations
on the volatility decays slowly. However, there is no stationary solution to the equations defining
a long-memory ARCH process, see e.g., Giraitis, Kokoszka and Leipus (2000), Kazakevičius and
Leipus (2002), Giraitis and Surgailis (2002), the only exception being the long-memory linear
ARCH process introduced by Giraitis, Robinson and Surgailis (2000). Granger and Ding (1995)
and other authors considered the occurrence of long-range dependence in asset price volatilities.

2.3 Multivariate analysis

The multivariate properties of volatility processes can be analyzed by considering the ‘co-
volatility’ processes. The volatility processes associated with a conditional mean process Rt

can be represented by its absolute value |Rt| or the squared returns process R2
t . Thus, the co-

volatility of the bivariate processes (R1,t, R2,t) can be represented by the processes
√

|R1,tR2,t|
or R1,tR2,t, although only the first process is positive. Empirical evidence on asset price series,
e.g., FX rates reported on table 1 below, has shown that several time series share a common
degree of long-range dependence in their volatilities and co-volatilities.
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Table 1: Estimation of the fractional degree of integration for the series of absolute returns on
Pound-Dollar |R1,t|, Deutschmark-Dollar |R2,t|, squared returns R2

1,t, R2
2,t, and the co-volatilities

√

|R1,tR2,t| and R1,tR2,t for the period April 1979 - January 1997. We use here the Gaussian
estimator defined in (14). Asymptotic S.E. (2

√
m)−1 are between parentheses.

m |R1,t| |R2,t|
√

|R1,tR2,t|
T/4 0.2385 (0.0147) 0.2312 (0.0147) 0.2413 (0.0147)
T/8 0.3071 (0.0207) 0.3219 (0.0207) 0.3230 (0.0207)
T/16 0.4113 (0.0293) 0.4073 (0.0293) 0.4393 (0.0293)

m R2
1,t R2

2,t R1,tR2,t

T/4 0.1569 (0.0147) 0.1478 (0.0147) 0.1397 (0.0147)
T/8 0.2312 (0.0207) 0.2119 (0.0207) 0.2073 (0.0207)
T/16 0.2770 (0.0293) 0.2787 (0.0293) 0.2952 (0.0293)

A multivariate analysis of long-range dependent volatility processes can be carried by con-
sidering the parametric framework of the class of multivariate long-memory ARCH processes,
introduced by Teyssière (1997b, 1998), and defined as:

Rt = m(Rt) + εt, εt ∼ i.i.d. N(0, Σt), (20)

where m(Rt) denotes the vector regression function, εt is a n-dimensional vector of Gaussian
error terms with conditional covariance matrix Σt. The typical element sij,t of Σt being either

sij,t =
ωij

1 − βij(1)
+

(

1 − (1 − φijL)(1 − L)dij

1 − βijL

)

εi,tεj,t i, j = 1, . . . , n, (21)

or

sij,t =
∞

∑

k=1

B(pij + k − 1, dij + 1)

B(pij , dij)
εi,t−kεj,t−k, i, j = 1, . . . , n, (22)

i.e., both conditional variances and covariances are modeled as LM-ARCH processes, which differ
by different parameterizations: (21) is termed as fractionally integrated GARCH, see Baillie et

al. (1996), while (22) defines the long-memory ARCH devised by Ding and Granger (1996). This
class of multivariate LM-ARCH models has a few restrictions: the conditions on the parameters
insuring that the matrix Σt is positive definite have to be implemented numerically in the
estimation procedure, see Teyssière (1997b). Furthermore, the number of parameters increases
quickly with the dimension of the vector process, so that so far only three-dimensional models
have been estimated, see Teyssière (1998). However, empirical estimation results have shown
that the conditional variances and covariances of several asset prices returns share the same
degree of long-memory, an interesting property which stimulated further research producing the
theoretical models presented later in this paper.

2.4 Change–point processes

Volatility processes differ from standard long-range dependent processes: while long-range de-
pendent time series exhibit local trends, the proxy of volatility processes, e.g., the absolute

6



returns |Rt| or the squared returns R2
t do not contain such a trend. Figure 1 below displays the

absolute value of returns on the FTSE 100 index, which is not trended, although the estimated
degree of long-memory with Robinson’s (1995) Gaussian estimator yields d = 0.33.

Figure 1: Absolute returns on the FTSE 100 index.
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Mikosch and Stărică (1999, 2002) have shown that the ACF of the absolute value of a non-
homogenous GARCH(1,1) process, i.e., a GARCH(1,1) process with changing coefficients, has a
hyperbolic rate of decay which resembles the one of a long-range dependent process. We consider
as example the following change–point GARCH(1,1) process defined as:

yt = µ + εt, σ2
t = ω + βσ2

t−1 + αε2
t−1, εt ∼ N(0, σ2

t ), (23)

where the parameters ω, β and α change as follows:

DGP 1: a GARCH(1,1) process with change point in the middle of the sample, such that
the unconditional variance σ2 = ω/(1 − α − β) remains unchanged (σ2 = 0.25)

ω = 0.1, β = 0.3, α = 0.3 for t = 1, . . . , [T/2] (24)

ω = 0.15, β = 0.25, α = 0.15 for t = [T/2] + 1, . . . , T

DGP 2: a GARCH(1,1) process with change in the middle of the sample, with change in
the unconditional variance of the process,

ω = 0.1, β = 0.3, α = 0.3 for t = 1, . . . , [T/2] (σ2 = 0.25) (25)

ω = 0.15, β = 0.65, α = 0.25 for t = [T/2] + 1, . . . , T (σ2 = 1.5) (26)

DGP 3: a smooth transition GARCH(1,1) process, such that the parameters ω(t), β(t)
and α(t) change smoothly, i.e.,

ω(t) = 0.1 + 0.05F (t, [T/2]), β(t) = 0.3 + 0.35F (t, [T/2]), (27)

α(t) = 0.3 − 0.05F (t, [T/2]), γ = 0.05,

where F (t, k) = (1 + exp(−γ(t − k)))−1, γ is a strictly positive parameter which governs
the smoothness of the change. If γ becomes very large, this DGP reduces to DGP 2.
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Table 2: Tests for long-range dependence on the absolute value of a GARCH process with
change–point in the middle of the sample. T = 500. Test size 5%.

DGP 1 DGP 2 DGP 3

q KPSS V/S R/S KPSS V/S R/S KPSS V/S R/S

0 0.2015 0.2770 0.2995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.1470 0.1912 0.1785 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.1203 0.1443 0.1218 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.0874 0.0918 0.0601 1.0000 0.9998 0.9996 1.0000 0.9994 0.9991
10 0.0735 0.0674 0.0356 0.9993 0.9981 0.9891 0.9994 0.9979 0.9858
20 0.0632 0.0470 0.0188 0.9945 0.9819 0.8596 0.9978 0.9817 0.8285
30 0.0567 0.0325 0.0076 0.9846 0.9274 0.4844 0.9930 0.9361 0.4112

Table 2 displays the simulation results of the various tests for long-range dependence in the
absolute returns generated by the change–point GARCH processes defined above. Similar re-
sults are obtained when considering the series of squares of a non-homogeneous GARCH(1,1)
processes. Thus, the tests proposed in Lo (1991), Kwiatkowski et al. (1992) and Giraitis et al.

(2003) can wrongly detect the presence of long-range dependence in the volatility process, while
the true DGP is a non-homogeneous GARCH process with a non-constant unconditional vari-
ance. However, when the unconditional variance is constant, the power of these tests tends to
their size, a statistical property which is also observed for change–point tests, see Kokoszka and
Teyssière (2002). In fact, a change in the unconditional variance is one of the main assumptions
for change–point tests in volatility, see e.g., Kokoszka and Leipus (2000). We observe that the
R/S statistic is more sensitive to the truncation order q than the other statistics. Furthermore,
Fig. 2 below shows the absolute returns of a series generated by DGP 2. Although standard
tests and estimators detect the presence of long-range dependence this series is not trended.
The class of non-homogeneous GARCH(1,1) processes is also appropriate for fitting asset prices
returns.

Figure 2: Absolute value of the realization of a change–point GARCH process.
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There is a substantial literature on change–point processes, interested readers are referred
to Besseville and Nikifirov (1993) and Csörgő and Horváth (1997) for complete surveys. Most
of these tests are concerned with change–point in the conditional mean processes, while we
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are interested here in conditional variance processes, although one can use, without theoretical
foundations, these change–point tests for conditional mean processes to the volatilities and co-
volatility proxy processes, i.e., R2

1,t, |R1,t|, R1,tR2,t, and
√

|R1,tR2,t|. We consider in this survey
the tests for change point in conditional variance, proposed by Kokoszka and Leipus (2000),
Horváth, Kokoszka and Teyssière (2001) and Kokoszka and Teyssière (2002).

Kokoszka and Leipus (2000) proposed a CUSUM based estimator for change–point in the
class of ARCH(∞) processes at unknown time t. This estimator is defined by:

t̂ = min

{

t : |Ct| = max
1≤j≤T

|Cj |
}

, (28)

where

Ct =
t(T − t)

T 2





1

t

t
∑

j=1

R2
j −

1

T − t

T
∑

j=t+1

R2
j



 . (29)

Horvath et al. (2001) proposed several tests for change–point in ARCH sequences, based on
the empirical process of squared residuals. Berkes and Horváth (2002) analyzed the empirical
process of squared residuals for GARCH(p, q) sequences. According to Kokoszka and Teyssière
(2002), some of these asymptotic tests work well when considering the squared residuals for
GARCH(1,1) sequences although bootstrap tests have always the correct size and are then more
reliable.

We consider here a GARCH(1,1) model fitted on the simulated returns, i.e.,

Rt = µ + εt, εt ∼ N(0, σ2
t ), σ2

t = ω + βσ2
t−1 + αε2

t−1, (30)

and we denote by ε̂2
t the sequence of squared standardized residuals for this GARCH(1,1) model.

The first statistic is a Kolmogorov-Smirnov type statistic. For 1 ≤ k ≤ T , define

T̂ (k, t) =
√

T
k

T

(

1 − k

T

)

∣

∣

∣
F̂k(t) − F̂ ∗

k (t)
∣

∣

∣
, (31)

with

F̂k(t) =
1

k
#{i ≤ k : ε̂2

i ≤ t}, F̂ ∗
k (t) =

1

T − k
#{i > k : ε̂2

i ≤ t}. (32)

The K-S statistic is defined as

M̂ = sup
0≤t≤∞

max
1≤k≤T

|T̂ (k, t)|. (33)

According to Kokoszka and Teyssière (2002), correct inference is obtained by using bootstrap
based inference. Horvath et al. (2001) proposed also a Cramér-von Mises statistic:

B̂ =

∫ 1

0

{

1

T

T
∑

i=1

[T̂ ([Ts], ε̂2
i )]

2

}

ds. (34)

The distribution function of B can be derived from Blum, Kiefer and Rosenblatt (1961). Kokoszka
and Teyssière (2002) have shown that this asymptotic test provides correct inference.
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3 Interaction models

The class of models considered here differ from standard microeconomic models as we consider
that agents are heterogeneous and do not act independently on the markets, but their beliefs and
actions are affected by the predominant opinion among market participants. Keynes pointed
out that individuals trades are concerned about what ‘market sentiment’ is rather than about
fundamental values. We consider here equilibrium models, thus we rule out the case of the
intra-day prices, which are not equilibrium prices but result from the content of book orders.

If the markets are efficient, the expected price E(Pt+1) of an asset at time t + 1 conditional
on the information set It is given by:

E(Pt+1|It) = Pt. (35)

In our model, agents do not consider markets to be efficient and assume that they can predict
the next price Pt+1. Chartists assume that the exchange rate Pt+1 is a convex linear function
of the previous prices, i.e.,

Ec (Pt+1|It) =
Mc
∑

j=0

hjPt−j , with
Mc
∑

j=0

hj = 1, (36)

where hj , j = 0, . . . , M c are constants, M c is the memory of the chartists, while fundamentalists
forecast the next price as:

Ef (Pt+1|It) = P̄t +
Mf
∑

j=1

νj(Pt−j+1 − P̄t−j), (37)

where νj , j = 1, . . . , Mf are positive constants, representing the degree of reversion to the
fundamentals, Mf is the memory of the fundamentalists. This series of ‘fundamentals’ P̄t,
which can be thought as the price if it were only to be explained by a set of relevant variables,
is assumed to follow a random walk:

P̄t = P̄t−1 + εt, with εt ∼ N(0, σ2
ε). (38)

Individuals i have a standard mean–variance utility function:

U(W i
t+1) = E(W i

t+1) − λV (W i
t+1), (39)

where λ denotes the risk aversion coefficient, E(.) and V (.) denote the expectation and variance
operators. Agents have the possibility of investing at home in a risk free asset or investing
abroad in a risky asset.

Denote by ρt the foreign interest rate, by di
t the demand by the ith individual for foreign

currency, and by r the domestic interest rate. The exchange rate Pt and the foreign interest
rate ρt are considered by agents as independent random variables, with

ρt ∼ N(ρ, σ2
ρ) with ρt > r. (40)

Hence, the cumulated wealth of individual i at time t + 1, W i
t+1 is given by:

W i
t+1 = (1 + ρt+1)Pt+1d

i
t + (W i

t − Ptd
i
t)(1 + r). (41)
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Thus, we have:

E(W i
t+1|It) = (1 + ρ)Ei(Pt+1|It)d

i
t + (W i

t − Ptd
i
t)(1 + r), (42)

V (W i
t+1|It) = (di

t)
2ζt where ζt = V (Pt+1(1 + ρt+1)) . (43)

Demand di
t is found by maximizing utility. First order condition gives

(1 + ρ)Ei(Pt+1|It) − (1 + r)Pt − 2ζtλdi
t = 0, (44)

where Ei(.|It) denotes the expectation of an agent of type i. Let kt be the proportion of
fundamentalists at time t, the market demand is:

dt =
(1 + ρ)

(

ktE
f (Pt+1|It) + (1 − kt)E

c(Pt+1|It)
)

− (1 + r)Pt

2ζtλ
. (45)

Now consider the exogenous supply of foreign exchange Xt, then the market is in equilibrium
if aggregate supply is equal to aggregate demand, i.e., Xt = dt, which gives

Pt =
1 + ρ

1 + r

(

ktE
f (Pt+1|It) + (1 − kt)E

c(Pt+1|It)
)

− 2ζtλXt

1 + r
. (46)

We assume that 2ζtλXt/(1 + ρ) = γP̄t. If Mf = M c = 1, then the equilibrium price is given by

Pt =
kt − γ

A
P̄t −

ktν1

A
P̄t−1 +

(1 − kt)h1

A
Pt−1, (47)

with

A =
1 + r

1 + ρ
− (1 − kt)h0 − ktν1. (48)

Thus, when kt jumps from zero to one, our so called ‘Havana-India’ model resembles a change–
point process in the conditional mean. Since the process kt is likely to take all values between
0 and 1, it is of interest to study the effects of the evolution of the process kt on the occurrence
of long–range dependence in the volatility of the series generated by the microeconomic model.

We consider a multivariate extension of this model, i.e., the joint modeling of a bivariate
process (P1,t, P2,t). Both exchange rates depend on a pair of foreign interest rates (ρ1,t, ρ2,t).
Our bivariate model then becomes:

(

P1,t

P2,t

)

=

(

kt−γ
A1

P̄1,t − ktν1,1

A1
P̄1,t−1 +

(1−kt)h1,1

A1
P1,t−1

kt−γ
A2

P̄2,t − ktν2,1

A2
P̄2,t−1 +

(1−kt)h2,1

A2
P2,t−1

)

, (49)

with

Ai =
1 + r

1 + ρi
− (1 − kt)hi,0 − ktνi,1. (50)

We assume that the bivariate process of fundamentals (P̄1,t, P̄2,t) displays some form of positive
correlation, i.e.,

(

P̄1,t

P̄2,t

)

=

(

P̄1,t−1

P̄2,t−1

)

+

(

ε1,t

ε2,t

)

,

(

ε1,t

ε2,t

)

∼ N

[(

0
0

)

,

(

σ2
1,1 σ1,2

σ1,2 σ2
2,2

)]

, σ1,2 > 0.

(51)
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In the simulation study, we set σ1,2 so that the coefficient of correlation between the two processes
ε1,t and ε2,t is equal to 0.75. This choice has been motivated by the estimation results in Teyssière
(1997b) for the bivariate long-memory ARCH processes, where the coefficient of correlation in
the conditional covariance matrix Σt has been found equal to 0.75. As we will see in section 4,
the assumption of a positive correlation is crucial if we are interested in the co-volatility processes
√

|R1,tR2,t| and R1,tR2,t: in that case these co-volatility processes have exactly the same degree
of long-memory as the processes |R1,t|, |R2,t| and R2

1,t, R2
2,t respectively, in accordance with the

empirical findings of Teyssière (1997b). In Kirman and Teyssière (2002a), we assume σ1,2 = 0,
and simulation results are less satisfactory than the current ones, as the degree of LRD for the
series

√

|R1,tR2,t| is slightly higher than the ones for the series |R1,t|, |R2,t|.
We also assume that the process kt is the same for both markets, i.e., the proportion of

fundamentalists is the same for both currencies. This assumption is consistent with the one
that fundamentals for both series are correlated, i.e., both FX markets are linked. This is a
reasonable assumption if we consider that both currencies belong to the same ‘target-zone’, see
Engle and Gau (1997).

We consider here several types of processes for {kt}T
t=1. The first one is the epidemiologic pro-

cess introduced by Hans Föllmer and used in Kirman and Teyssière (2001, 2002a, 2002b), where
agents interact and communicate their beliefs on the next period forecast through Föllmer’s
epidemiologic process.

Let N be the total number of agents and ϑt be the number of agents with a fundamentalist
forecast at time t. We assume that pairs of agents meet at random and that the probability that
the first agent is converted to the opinion of the second one is equal to (1 − δ). Furthermore,
each agent can independently change his opinion with probability ξ, so that the process is not
trapped in the extremes, i.e., agents are either all chartists or all fundamentalists.

Given that the state of the process is summarized by the value of ϑt, its evolution is defined
by the following transition matrix:

Pr(ϑ, ϑ + 1) =

(

1 − ϑ

N

) (

ξ + (1 − δ)
ϑ

N − 1

)

, (52)

Pr(ϑ, ϑ − 1) =
ϑ

N

(

ξ + (1 − δ)
N − ϑ

N − 1

)

, (53)

Pr(ϑ, ϑ) = 1 − Pr(ϑ, ϑ + 1) − Pr(ϑ, ϑ − 1). (54)

For this epidemiologic process, the proportion of fundamentalists and the forecasts of agents
does not depend on the past performance of forecasts functions. For that reason, we can consider
a diffusion process for kt which depends on the accuracy of the forecast functions in the recent
periods: the probability of choosing a particular forecast function depends on its comparative
performance over the competing forecast function. We can use Theil’s (1961) U–statistic as
measure of forecast accuracy over the last M periods:

U j
M =

√

√

√

√

M−1
∑M

l=1 wl (Pt−l − Ej(Pt−l|It−1−l))
2

M−1
∑M

l=1 wlP
2
t−l

, j ∈ {c, f},
∑

l

wl = 1, (55)

M being the learning memory of agents, the weights wl, l = 1, . . . , M representing the relative
importance of the forecast errors at time t − l. We choose here an exponential choice function
gj(·) for the forecast function Ej(·) defined by:

gj(t) = exp(−ΥU j
M ), Υ > 0, j ∈ {c, f}, (56)
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the parameter Υ is called the “intensity of choice”. At time t, agents will chose with probability
πf (t) the fundamentalist forecast function, where

πf (t) =
gf (t)

gf (t) + gc(t)
, (57)

the probability of choosing the chartist forecast function is πc(t) = 1 − πf (t). For the bivariate
process, the probability of choosing the fundamentalist forecast function is given by averaging
the two choice functions for both markets.

Let ϑt/N be the proportion of fundamentalists resulting from either the epidemiologic process
or the learning process. We assume that agents observe this proportion with error, i.e., agent i
observe ki,t defined as:

ki,t =
ϑt

N
+ εi,t with εi,t ∼ N(0, σ2

ϑ). (58)

If agent i observe ki,t ≥ 0.5, then he will make a fundamentalist forecast, otherwise he will make
a chartist forecast. The proportion kt of agents making a fundamentalist forecast is then given
by:

kt = N−1#

{

i : ki,t ≥
1

2

}

. (59)

For the epidemiologic case, the herding behavior of the process kt into the extremes depends
on ξ and σϑ, while it depends on Υ and σϑ for the process based on the forecasts accuracy.
For both processes, the parameter σϑ measures the accuracy of observation of the proportion
of fundamentalists; see equation (58). If σϑ becomes smaller, the prevailing opinion is observed
with more accuracy, which results in massive swings of opinion.

As we will see in the next section, these parameters govern the level of long-range dependence
in the volatility of the simulated returns.

4 Simulation study

We simulated 10.000 replications of our microeconomic models. We considered samples of 1500
observations. The models generate the empirical properties of asset prices returns. The series
of asset returns Rt do not display dependence, the average estimated value for d is d̂ = 0.002
for the series Rt. When the sample size increases from 750 to 1500, the estimated value of d for
the absolute returns |Rt| increases from d̂ = 0.20 to d̂ = 0.28. When estimating the parameters
of a GARCH processes on the series of 750 observations, we get α̂ = 0.04 and β̂ = 0.74, while
for the series of 1500 observations, α̂ = 0.055 and β̂ = 0.88: the model replicates the empirical
property of occurrence of IGARCH processes when the sample size increases, see Kirman and
Teyssière (2002b). The occurrence of long-range dependence in asset prices volatility might be
the consequence of several changes in regime in the price process.

The level of long-range dependence d of the simulated processes increases when we reduce
the value of σϑ, i.e., when the proportion of fundamentalists is observed with more accuracy: in
that case the process kt herds into the extremes. The level of long-range dependence is linked to
the swings in the predominant opinion which make the price process defined by equation (47)
switching between two regimes.
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Table 3: Tests for long-range dependence on the absolute value of Simulated returns, Rt, absolute
returns |Rt| and squared returns R2

t . T = 1500. Test size 5%.

Rt, P (d = 0) |Rt|, P (d > 0) R2
t , P (d > 0)

q KPSS V/S R/S KPSS V/S R/S KPSS V/S R/S

0 0.9369 0.9358 0.9343 0.9460 0.9772 0.9720 0.9440 0.9733 0.9739
1 0.9389 0.9376 0.9369 0.9408 0.9739 0.9687 0.9349 0.9674 0.9655
2 0.9395 0.9408 0.9388 0.9375 0.9687 0.9642 0.9323 0.9648 0.9609
3 0.9402 0.9486 0.9414 0.9343 0.9635 0.9622 0.9271 0.9609 0.9557
4 0.9395 0.9512 0.9421 0.9297 0.9616 0.9609 0.9226 0.9577 0.9531
5 0.9388 0.9577 0.9453 0.9271 0.9590 0.9590 0.9219 0.9551 0.9512
10 0.9375 0.9629 0.9512 0.9161 0.9486 0.9473 0.9076 0.9408 0.9421
15 0.9395 0.9603 0.9531 0.8946 0.9375 0.9388 0.8875 0.9284 0.9336
20 0.9369 0.9649 0.9557 0.8777 0.9265 0.9271 0.8719 0.9167 0.9232
25 0.9395 0.9649 0.9557 0.8595 0.9031 0.9161 0.8491 0.8907 0.9083
30 0.9375 0.9681 0.9551 0.8270 0.8823 0.9024 0.8296 0.8615 0.8927

Table 4: Gaussian estimates of d for the bivariate series of simulated absolute returns |R1,t|,
|R2,t|,

√

|R1,tR2,t|. (Monte Carlo S.E. in parenthesis.) T = 1500. mopt denotes the optimal
bandwidth.

m |R1,t| |R2,t|
√

|R1,tR2,t|
mopt 0.2771 (0.1127) 0.2766 (0.1124) 0.2793 (0.1130)
84 0.2984 (0.0965) 0.2978 (0.0975) 0.3008 (0.0978)
108 0.2660 (0.0880) 0.2653 (0.0873) 0.2670 (0.0883)
132 0.2421 (0.0811) 0.2411 (0.0814) 0.2432 (0.0821)
156 0.2244 (0.0753) 0.2232 (0.0757) 0.2250 (0.0755)

Table 5: Gaussian estimates of d for the bivariate series of simulated squared returns R2
1,t, R2

2,t,
R1,tR2,t. (Monte Carlo S.E. in parenthesis.) T = 1500. mopt denotes the optimal bandwidth.

m R2
1,t R2

2,t R1,tR2,t

mopt 0.2582 (0.1076) 0.2592 (0.1096) 0.2121 (0.1009)
84 0.2851 (0.0939) 0.2852 (0.0956) 0.2462 (0.0928)
108 0.2534 (0.0855) 0.2541 (0.0857) 0.2176 (0.0835)
132 0.2304 (0.0788) 0.2308 (0.0793) 0.1978 (0.0775)
156 0.2137 (0.0723) 0.2130 (0.0736) 0.1822 (0.0706)

The assumption of a positive correlation between the fundamentals proved to be important.
In Kirman and Teyssière (2002a), we assume that there is no correlation between the two pro-
cesses (ε1,t, ε2,t), i.e., σ1,2 = 0. As a consequence, the estimated level of long-range dependence
in the co-volatility process

√

|R1,tR2,t| was slightly higher than the one of the volatility processes

14



|R1,t| and |R2,t|. Furthermore, for this uncorrelated setting, the co-volatility process R1,tR2,t

does not display any long-range dependence. With the assumption that σ1,2 > 0, the simulated
co-volatility process R1,tR2,t displays long-memory, the degree of which is close to the one of the
series R2

1,t and R2
2,t, as empirically observed, see tables 4 and 5.

From table 6, we can see that the V/S and R/S ‘pox-plot’ estimation results do not differ
too much from the ones provided by the Gaussian estimator (Robinson, 1995).

Table 6: “Pox–plot” estimates of d based on the squared returns series R2
t . (Monte Carlo S.E.

in parenthesis.) T = 1500.
R/S estimate of d V/S estimate of d KPSS estimate of d

d 0.2506 (0.0791) 0.2604 (0.0993) 0.3324 (0.1182)

We report here simulation results for the CVM and K-S change–point tests. Interested
readers are referred to Kirman and Teyssière (2001, 2002b) for the performance of the test by
Kokoszka and Leipus (2000). Given that the asymptotic K-S test does not have the correct
size, we resort to bootstrap based inference for this test, the number of bootstraps B is set to
399 for all replications. For a test of size 5%, the CVM test rejects 22.97% of the times the
null hypothesis of no change–point, while the K-S test rejects this null hypothesis 20.58% of
the times. When interpreting these results, we have to keep in mind that these tests have been
devised for processes with a single change–point in the conditional variance, and that we apply
them to the first-difference of non-standard conditional mean processes, which can have multiple
changes in regime.

Figure 3 displays the absolute value of a series of simulated returns generated by the model.

Figure 3: Absolute value of a series of returns produced by the microeconomic model.
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This series resembles the series of absolute returns on asset prices, i.e., it does not have a
trend, although the ACF of this series displayed LRD-type behavior, see Fig. 4 below.
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Figure 4: ACF of the absolute value of a series of returns produced by the model.
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In Kokoszka and Teyssière (2002) and Kirman and Teyssière (2001), we used the wavelet
estimator by Veitch and Abry (1999) for estimating the degree of LRD of several asset prices
volatilities and the volatility process generated by our model. Wavelet analysis is of interest as
this multi-resolution analysis is unaffected by changes in the location parameter of a time series
and is then able to distinguish between genuine long–range dependence and spurious long–range
dependence caused by changes in regimes.

For both real data and series simulated by our model, we observe that the estimated degree
of LRD with the wavelet estimator is far lower than the one obtained with the Whittle estimator.
The degree of LRD for the absolute returns |R1,t| on British Pound–US dollar drops from 0.41
when estimated with the local Whittle estimator to 0.0692 when estimated with the wavelet
estimator, while the degree of LRD for the absolute returns |R2,t| on German Deutschmark–US
dollar falls from 0.40 to 0.0698 respectively. We observe the same changes for the degrees of
LRD for the other empirical and simulated volatility and co–volatility processes, i.e., R2

1,t, R2
2,t,

√

|R1,tR2,t| and R1,tR2,t. Furthermore, for several series, the confidence intervals for the wavelet
estimates often contain the value zero. Our microeconomic models are then able to generate
most of the empirical dependence properties of daily returns.

Table 7: Estimated degree of LRD with the wavelet estimator.

Series |R1,t| |R2,t|
√

|R1,tR2,t| R2
1,t R2

2,t R1,tR2,t

d 0.0692 0.0698 0.0624 0.0621 0.0805 0.0452
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Related Tests for Long-memory in Volatility and Levels. Journal of Econometrics, 112, 265–294.

GIRAITIS, L., KOKOSZKA, P. S., LEIPUS, R. and G. TEYSSIÈRE (2002). On the Power of R/S-
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KIRMAN, A. and G. TEYSSIÈRE (2001). Testing for Bubbles and Change–Points. Preprint.
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