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Introduction

So far we have considered homogeneous long-memory processes, i.e., processes
characterized by a single set of parameters,

This assumption is unrealistic in finance, as financial time series display also
(local) trends, changes in regime, etc;

We then have to consider methods that
1 Detect changes in regime for strongly dependent data,
2 Provide an unbiased estimate of the memory parameter for non-homogeneous

time series.
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The change-point problem

Consider the realized time series {Y1, . . . ,YT},
Is this series characterized by a constant vector parameter θ

Or is this vector changing over time?

For financial time series, the hypothesis of a constant vector parameter is
unlikely.

Change-point detection of a GARCH process allows to estimate the parameters
of this process on the largest interval of homogeneity, and then obtain an
unbiased estimate of the volatility.

This is of interest for
1 Practitioners using GARCH models for risk management,
2 Traders using GARCH models for correcting the bias in the Black-Scholes

formula.
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Change-point detection: the FTSE 100 index
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Figure: Returns on the FTSE 100 index Xt = log(Pt/Pt−1) (1986–2002)

We observe intermittency of the volatility process: large variations are followed by
variations of smaller magnitude.
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Splitting the series in shorter intervals with homogeneous
variance
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Figure: Returns on the FTSE 100 index Xt = log(Pt/Pt−1) (1986–2002)

Note

The Gaussian adaptive method used for this splitting will be exposed later.

Gilles Teyssière, Aarhus University Long–Memory Lectures Dependence and Change-Points in Volatility



Empirical properties of strong dependence in volatility
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Figure: ACF of |Xt | over the time interval (1986–2002)

Remark

ACF decays hyperbolically to zero, like a long-memory process
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Characterization of the dependence structure with the ACF

For a short-range dependent process, the ACF decays quickly to zero, the
decay rate is said exponential.

∞∑
k=−∞

|γ(k)| <∞

Example

AR(1) process Yt = a1Yt−1 + ε, which has a stationary solution if |a1| < 1,

γ(k) =
σ2

1− a2
1

ak
1 , σ2 = Var (ε)

For a second order stationary strongly dependent process, the ACF decays as
follows:

γ(k) ∼ k2d−1, d ∈ (0, 1/2),
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Consider the ACF on sub-intervals
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Figure: ACF of |Xt | over the time intervals :
a: Top, left: [1, 112] ; b: Top, right: [113, 568]
c: Bottom,left: [569, 624] ; d: Bottom, right: [625, 1840]
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Temporary conclusions

1 Financial time series, when considered as the realization of a single homogeneous
process, display some characteristics similar to long-memory processes.

2 However, when studied over sub-intervals, these properties of strong dependence
are less obvious.

3 In our particular case, the dependence property was inferred from the asymptotic
behavior of the empirical ACF

ρ̂Y (k) =
γ̂Y (k)

γ̂Y (0)
, γ̂Y (k) = T−1

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ), γ̂Y (0) = Var (Y ).

4 One could wonder whether these methods are appropriate,
5 First, ACF is not much informative if the process is “not very close” to being

Gaussian (see Samorodnitsky, 2002) which is the case of financial time series.
6 Next, if the process is not second order stationary, the conclusions drawn from the

asymptotic behavior of the ACF are wrong.
7 Finally, the volatility process could mix long-range dependence and change-points.
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Change-point detection: parametric tests

Tests based on the assumption that the process that generates the data is
characterized by a finite number of parameters.

We make the assumption that this process is an ARCH-type process

These tests are based on the comparison of either the residual process of the
ARCH (GARCH) process or likelihood of the process on a moving window
splitting the observed sample in two.

These tests have a drawback, as they consider only the case of a single-change
point.

Gilles Teyssière, Aarhus University Long–Memory Lectures Dependence and Change-Points in Volatility



Tests based on the empirical process of squared residuals
of ARCH sequences I

Process ARCH(p) defined by:

Xt = σtεt , σ2
t = b0 +

p∑
j=1

bj X
2
t−j , εt iid, E ε0 = 0, E ε2

0 = 1,

b0 > 0 and bi > 0.

Empirical process of squared residuals ε̂2
t =

X 2
t

σ̂2
t

K̂T (s, t) =
1√
T

∑
16i6[Ts]

[
I
{
ε̂2

i 6 t
}
− F (t)

]
, 0 < s 6 1.

F repartition function of ε2
0
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Tests based on the empirical process of squared residuals
of ARCH sequences II

Tests based on the process:

T̂T (s, t) =
√

T · [Ts]

T

(
1− [Ts]

T

)(
F̂[Ts](t)− F̂ ∗T−[Ts](t)

)
,

with

F̂[Ts](t) =
1

[Ts]

∑
16i6[Ts]

I
{
ε̂2

i 6 t
}

F ∗T−[Ts](t) is analogously defined using indices greater than [Ts].

The test compares the empirical distribution function of ε̂2
1, . . . , ε̂

2
[Ts] with the

one of ε̂2
[Ts]+1, . . . , ε̂

2
T

T̂T (s, t) has the same limit as K̂T (s, t)− [Ts]
T K̂T (1, t)

Gilles Teyssière, Aarhus University Long–Memory Lectures Dependence and Change-Points in Volatility



Tests based on the empirical process of squared residuals
of ARCH sequences III

Assumptions

1 Distribution function F of ε2
0 has a derivative f (t) = F

′
(t) continuous over (0,∞),

2 limt→0 tf (t) = 0 and limt→∞ tf (t) = 0,
3 The vector of parameters b is estimated by a unbiased estimator b̂ = (b̂0, . . . , b̂p) which

admits the representation:

b̂i − bi =
1

n

∑
16j6n

li (ε
2
j )fi (εj−1, εj−2, . . .) + oP (T−1/2), 0 6 i 6 p,

(The PML estimator satisfies this hypothesis.)
4 The functions li are regular in the following sense

E li (ε
2
0) = 0, E [li (ε

2
0)]2 <∞, E [fi (ε0, ε−1, . . .)]2 <∞, 0 6 i 6 p,

5 E ε4
0 <∞,

6 (E ε4
0)1/2

∑
16j6p bj < 1.
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Tests based on the empirical process of squared residuals
of ARCH sequences IV

Under the previous hypotheses, the asymptotic distribution of the empirical
process of the squared residuals of an ARCH sequence is

K̂T (s, t)
d−→ K (s, t) + stf (t)ξ,

f is the density of ε2
i , ξ is a Gaussian VA correlated with K (s, t).

Since
K̂T (s, t)

d−→ K (s, t) + stf (t)ξ,

then

T̂T (s, t) = K̂T (s, t)− [Ts]

T
K̂T (1, t)

∼ (K (s, t) + stf (t)ξ)− s (KT (1, t) + tf (t)ξ)

= K (s, t)− sK (1, t),
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Tests based on the empirical process I
Kolmogorov-Smirnov test

For 1 6 k 6 T define (change-point date k is unknown)

F̂k (t) =
1

k
#{i 6 k : ε̂2

i 6 t}, F̂ ∗k (t) =
1

T − k
#{i > k : ε̂2

i 6 t},

T̂T (k , t) =
√

T · k

T

(
1− k

T

) ∣∣∣F̂k (t)− F̂ ∗k (t)
∣∣∣ ;

M̂T = sup
06t6∞

max
16k6T

|T̂T (k , t)| = max
16k6T

max
16j6T

| T̂T (k, ε̂2
j ) | .

The asymptotic distribution of M̂T is the same as the generalized
Kolmogorov-Smirnov statistic.
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Tests based on the empirical process II
Kolmogorov-Smirnov test

Remark

Estimator of the change-point date, (supposed unique):

k̂M = max

{
k : max

16k6T
max

16j6T
| T̂T (k , ε̂2

j ) |
}

if max
16k6T

max
16j6T

| T̂T (k, ε̂2
j ) |> ĉT (α),

ĉT (α): asymptotic or bootstrap critical value at the level α
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Tests based on the empirical process
Cramér–Von Mises test

The Cramér – von Mises statistic is defined as:

B̂ :=

∫ 1

0

{
1

T

T∑
i=1

[K̂([Ts], ε̂2
i )]2

}
ds

which has approximatively the following asymptotic distribution:

B̂ ∼ B :=

∫ 1

0

∫ 1

0

K2(s, u)duds,

where K is the Kiefer process.

Critical values are obtained from Blum, Kiefer and Rosenblatt (1961).
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Tests based on the generalized likelihood ratio I

We consider as null hypothesis a GARCH(1,1) model with constants
coefficients:

Xt = σtεt , εt ∼ N(0, σ2
t ), σ2

t = ω + βσ2
t−1 + αε2

t−1,

Under the alternative hypothesis, for t > t0, the process is defined as:

Xt = σtεt , εt ∼ N(0, σ2
t ), σ2

t = ω∗ + β∗σ2
t−1 + α∗ε2

t−1,

where ω∗ 6= ω, or β∗ 6= β, or α∗ 6= α.

Definition

The generalized likelihood ratio statistic is defined as:

Λt0 =
maximum of the likelihood function under the null hypothesis

maximum of the likelihood function if change-point in t0
.

see Csörgő and Horváth (1997)
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Tests based on the generalized likelihood ratio II

Notations

ω̂, α̂, β̂: estimated values from the whole sample X1, . . . ,XT ,

ω̃, α̃, β̃: estimated values from the sub-sample X1, . . . ,Xt0 ,

ω̄, ᾱ, β̄: estimated values from the sub-sample Xt0+1, . . . ,XT .

Define σ̂2
t = ω̂ + β̂σ̂2

t−1 + α̂ε̂2
t−1,

Define (σ̄2
t , σ̃

2
t ) similarly as σ̂2

t .

Since the likelihood is Gaussian

−2 ln Λt0 = −

[
t0∑

t=1

(ln σ̃2
t − ln σ̂2

t ) +
T∑

t=t0+1

(ln σ̄2
t − ln σ̂2

t )

]

+
n∑

t=1

ε̂2
t

σ̂2
t

−
t0∑

t=1

ε̂2
t

σ̃2
t

−
T∑

t=t0+1

ε̂2
t

σ̄2
t
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Tests based on the generalized likelihood ratio III

Since the change-point date t0 is unknown, we consider the statistic:

Λ∗T = max
1≤k≤T

−2 ln Λk

Even if observations are iid, the statistic Λ∗T satisfies an Erdös-type limit
theorem,with an exponential distribution as limit.

The critical value, over which H0 is rejected, is:

cT (α) =
[Dd (log T )− log[− log(1− α)] + log 2]2

2 log log T
,

with Dd (x) = 2 log x +
d

2
log log x − log Γ

(
d

2

)
.

Remark

The convergence rate of this limit is very slow, and asymptotic critical values are
far greater than the ones obtained in small sample by simulation, see Gombay and
Horváth (1996).
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Tests based on the generalized likelihood ratio IV

The generalized likelihood ratio statistic is based on the process{
h(1− h)(−2 ln Λ[Th]), 0 < h < 1

}
If observations are independent, with a density depending on b parameters,
then this process can be approximated by{

b∑
i=1

(W 0
i )2(h), 0 < h < 1

}

where W 0
i (·), i = 1, . . . , b are independent Brownian bridges on [0, 1].

Under the null hypothesis of constancy of parameters

∆∗T := T−3
T−1∑
k=1

k(T − k)(−2 ln Λk )
d−→
∫ 1

0

b∑
i=1

(W 0
i )2(h)dh.

Critical values for ∆∗T are obtained from Kiefer (1959).
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Test by Inclan and Tiao (1994)

Based on the process {DT (h), h ∈ [0, 1]}

DT (h) :=

∑[Th]
j=1 X 2

j∑T
j=1 X 2

j

− [Th]

T
, h ∈ [0, 1].

Under the null hypothesis H0 of constant variance, the process
{DT (h), h ∈ [0, 1]} converges to a Brownian bridge over [0, 1].

A test of constancy of the unconditional variance is based on the following
functional of the process {DT (h)}, which under H0 converges to the
supremum of a Brownian bridge over [0, 1].√

T/2 sup
0≤h≤1

|DT (h)| d−→ sup
0≤h≤1

∣∣W 0(h)
∣∣ .
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CUSUM test by Kokoszka and Leipus (1999) I

We make the assumption that {Xt} is an ARCH(∞) process defined by:

Xt = σtεt , εt ∼ iid, Eε0 = 0, Var ε0 = 1,

σ2
t = ω +

∞∑
j=1

αj X
2
t−j , t = 1, . . . , t0,

σ2
t = ω? +

∞∑
j=1

α?j X 2
t−j , t = t0 + 1, . . . ,T ,

and we make the additional assumption that the unconditional variance
changes at time t0, supposed unknown:

∆(n) =
ω

1−
∑∞

j=1 αj
− ω?

1−
∑∞

j=1 α
?
j

6= 0.

The null hypothesis is H0 : ω = ω?, αj = α?j for all j , while the alternative
hypothesis is that there exists j such that HA : ω 6= ω? or αj 6= α?j .
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CUSUM test by Kokoszka and Leipus (1999) II

The CUSUM test is based on the process {UT (h), h ∈ [0, 1]} defined by:

UT (h) :=
√

T
[Th](T − [Th])

T 2

 1

[Th]

[Th]∑
j=1

X 2
j −

1

T − [Th]

T∑
j=[Th]+1

X 2
j

 ,

The test statistic is based on the following functional of the process
{UT (h), h ∈ [0, 1]}

sup
0≤h≤1

|UT (h)| /σ d−→ sup
0≤h≤1

∣∣W 0(h)
∣∣ ,

The variance σ2 is usually estimated by spectral methods, i.e., we use the
non-parametric estimator s2

T (q).
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The binary segmentation algorithm

Algorithm proposed by Vostrikova (1981), which allows to extend single
change-point methods to the multiple change-point case

Algorithm

1 Apply the single change-point procedure on the whole sample

2 If a change-point is detected, divide the sample in two at the estimated
change-point date,

3 Apply the single change-point procedure on these two subsamples,

4 Apply iteratively the procedure until no further change-point is found on the
new segments.
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Drawbacks of the local method
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Top : Binary segmentation
procedure
Bottom : Adaptive method

Open question

Which segmentation (dimension of the model) is the right one?
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Global method

Global method has some interesting properties:

1 This method can detect several change-points at unknown dates,

2 Even if the data are strongly dependent,

3 This method is based on a Gaussian likelihood, and then can be adapted to
the multivariate case,

4 This multivariate case is relevant if the series have common change-point
times,

5 Finally, even if the data are non Gaussian, this methods works practically well,
(interesting results on financial data)
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Relevance of the global method
An empirical example: the FTSE 100 and S&P 500 over the time interval 1986–2002
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Adaptive detection of multiple
change-point in the univariate case:
Top: returns on the FTSE 100 index,
Bottom: returns on the S&P 500 index,
(The estimated change-point times are
represented by vertical lines)

Remark

Change-point times for both series look common.
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The global method

We assume that the m–dimensional process {Yt = (Y1,t , . . . ,Ym,t)
′} abruptly

changes and is characterized by a (vector) parameter θ ∈ Θ, which is constant
between two changes.

Let K be an integer and let τ = {τ1, τ2, . . . , τK−1} be an ordered sequence of
integers that verify 0 < τ1 < τ2 < . . . < τK−1 < T .

For all 1 6 k 6 K , let U(Yτk−1+1, . . . ,Yτk
; θ) be a contrast function used for

estimating the true value of the parameter over the segment k.

The minimum contrast estimator (MCE) of θ̂(Yτk−1+1, . . . ,Yτk
), evaluated

over the kth segment of τ , is defined as the solution of the following
minimization problem:

U
(

Yτk−1+1, . . . ,Yτk
; θ̂(Yτk−1+1, . . . ,Yτk

)
)
6 U(Yτk−1+1, . . . ,Yτk

; θ) , ∀θ ∈ Θ.
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The global method: contrast function I

For all 1 6 k 6 K , define G as follows:

G (Yτk−1+1, . . . ,Yτk
) = U

(
Yτk−1+1, . . . ,Yτk

; θ̂(Yτk−1+1, . . . ,Yτk
)
)
.

We define the contrast function as J(τ ,Y) :

J(τ ,Y) =
1

T

K∑
k=1

G (Yτk−1+1, . . . ,Yτk
),

with τ0 = 0 and τK = T .
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The global method: contrast function II

We consider the general case of change-point in the covariance matrix of the
series {Yt},
More precisely, we assume that there exists an integer K?,, a sequence
τ ? = {τ?1 , τ?2 , . . . , τ?K?} with τ?0 = 0 < τ?1 < ... < τ?K?−1 < τ?K? = T and K?

(m ×m) covariance matrices Σ1,Σ2, . . . ,ΣK? such that
CovYt = E(Yt − E (Yt))(Yt − E (Yt))′ = Σk for τ?k−1 + 1 6 t 6 τ?k .

We consider two particular configurations:
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The global method: contrast function III

Model M1: There exists an m-dimensional vector µ such that E (Yt) = µ for
t = 1, 2, . . . ,T . Further, Σk 6= Σk+1 for 1 6 k 6 K? − 1.
In the simplest case of change-points in the covariance matrix, without change in
the mean, which is of interest for multivariate volatility processes, we use the
following contrast function based on the Gaussian log-likelihood function:

J(τ ,Y) =
1

T

K∑
k=1

nk log |Σ̂τk
|, (C1)

where nk = τk − τk−1 is the length of the segment k , Σ̂τk
is the (m ×m)

covariance matrix evaluated on the segment k :

Σ̂τk
=

1

nk

τk∑
t=τk−1+1

(Yt − Ȳ)(Yt − Ȳ)′.

Ȳ = T−1
∑T

t=1 Yt : sample mean of the m–dimensional vector Yt evaluated on the
whole sample.
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The global method: contrast function IV

Model M2: There exists K? m–dimensional vectors µ1, . . . µK? such that
E (Yt) = µk for τ?k−1 + 1 6 t 6 τ?k . Furthermore, (µk ,Σk ) 6= (µk+1,Σk+1) for
1 6 k 6 K? − 1.
For the detection of change-points in the vector of mean and/or covariance matrix
of a multivariate sequence of random variables, the contrast function reduces to;

J(τ ,Y) =
1

T

K∑
k=1

nk log |Σ̂τk
| (C2)

where the covariance matrix Σ̂τk
of dimension (m ×m) is evaluated over the

segment k :

Σ̂τk
=

1

nk

τk∑
t=τk−1+1

(Yt − Ȳτk
)(Yt − Ȳτk

)′

Ȳτk
= n−1

k

∑τk

t=τk−1+1 Yt : sample mean of the m–dimensional vector Yt over that
segment.
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The global method: contrast function V

Asymptotic results for the minimum contrast estimator of τ ? are obtained in the
following framework:

A1 For all 1 6 i 6 m and all 1 6 t ≤ T , define ηt,i = Yt,i − E (Yt,i ). There
exists C > 0 and 1 6 h < 2 such that for all u ≥ 0 and all s ≥ 1,

E

(
u+s∑

t=u+1

ηt,i

)2

6 C (θ)sh.

(A1 is verified for h = 1 for both weakly dependent processes and 1 < h < 2
for strongly dependent processes.)

A2 There exists a sequence 0 < a1 < a2 < . . . < aK?−1 < aK? = 1 such that
for all T > 1 and for all 1 6 k 6 K? − 1, τ?k = [Tak ].
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The global method: contrast function VI

When the real number of segments K? is known, we have the following result on
the convergence rate of the MCE of τ ?:

Theorem

Suppose that A1-A2 are verified. In the case M1 (resp. M2), let τ̂T be the dates
that minimize the empirical contrast J(τ ,Y) defined by equation (C1) (resp. (C2)).
Then, the sequence {T‖τ̂T − τ ?‖∞} is uniformly tight in probability:

lim
T→∞

lim
δ→∞

P( max
16k6K?−1

|τ̂T ,k − τ?k | > δ) = 0. (C3)

(Here, J(τ ,Y) is minimized over all possible sequences τ with length K?)
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The global method: contrast function VII

We use a Gaussian contrast function:

Univariate case: J(τ ,Y) =
1

T

K∑
k=1

Tk log σ2
k , τ = {τ1, τ2, . . . , τK−1} is an

ordered sequence of integers satisfying 0 < τ1 < τ2 < . . . < τK−1 < T ,
nk = τk − τk−1 is the length of the segment k ,

Multivariate case: J(τ ,Y) =
1

T

K∑
k=1

Tk log |Σ̂τk
|

The (m ×m) empirical covariance matrix Σ̂τk
is evaluated over the segment k

Σ̂τk
=

1

nk

τk∑
t=τk−1+1

(Yt − Ȳτk
)(Yt − Ȳτk

)′

Ȳτk
= T−1

k

∑τk

t=τk−1+1 Yt : sample mean of the m–dimensional vector Yt over
that segment.
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The global method: contrast function VIII

Change-point times are estimated by minimizing the penalized contrast function

J(τ , y) + βpen(τ ) = J(τ , y) + βT K

where

1 βT K : penalty term that controls the level of resolution of the segmentation
τ = {τ1, τ2, . . . , τK−1}.

2 If β is a function of T that tends to 0 when T tends to ∞, the following
theorem states that the number of estimated segments converges in probability
to K?.
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Penalty term I

Theorem

Let {βT} be a sequence of positive real numbers such that

βT −→
T→∞

0 and T 2−hβT −→
T→∞

∞, 1 6 h < 2.

Then, under the hypotheses A1-A2, the estimated number of segments K (τ̂T ),
where τ̂T is the penalized MCE estimator of τ ?, i.e., obtained by minimizing
J(τ ,Y) + βTpen(τ ), converges in probability to K?.

Remark

The contrast function J(τ ,Y) if minimized over the set of all possible sequences τ
and for all possible K , 1 ≤ K ≤ Kmax , Kmax is a finite upper bound of K?
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Penalty term II

Standard choice for β (that overestimate the number of change-points)

βT = log(T )/T (BIC)

βT = 4 log(T )/T 1−2d for strongly dependent series.

The parameter d is unknown,

How to estimate d from the data?

If the process is not stationary, standard estimation method seen in the
previous lectures provide incorrect results that overestimate the parameter d
and artificially increase β.

We can use methods robust to nonstationarity, like wavelets methods based on
the scaling properties of the wavelets coefficients, but these methods require a
large sample size.

We then resort to adaptive methods, i.e., methods such that the segmentation
does not depend too much on β.

These methods consist in finding a change in the curvature of (K , JK ) : K is
chosen so that JK ceases to significantly decrease.
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Adaptive choice for the penalty parameter I

Assume that the penalization pen(τ ) depends only on the dimension of the
model, i.e., the number of segments K . Set

JK = J(τ̂K ,Y),

pK = pen(τ ), ∀τ ∈ TK

p̂K = pen(τ̂K ).

Thus, for any penalty parameter β > 0, the solution τ̂ (β) minimize the
penalized contrast:

τ̂ (β) = argmin
τ

(J(τ ,Y) + βpen(τ ))

= τ̂ K̂(β)

where
K̂ (β) = arg min

K>1
{JK + βpK}.
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Adaptive choice for the penalty parameter II

The solution K̂ (β) is a piecewise constant function of β. If K̂ (β) = K ,

JK + βpK < min
L 6=K

(JL + βpL).

The, β verifies

max
L>K

JK − JL

pL − pK
< β < min

L<K

JL − JK

pK − pL
.

Then, there exists a sequence {K1 = 1 < K2 < . . .}, and a sequence
{β0 =∞ > β1 > . . .}, with

βi =
JKi − JKi+1

pKi+1 − pKi

, i > 1,

such that K̂ (β) = Ki , ∀β ∈ [βi , βi−1).

The set {(pKi , JKi ), i > 1} is the convex envelope of the set {(pK , JK ),K > 1}.
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Adaptive choice for the penalty parameter III

The estimated sequence τ̂ (β) should not depend too much on the choice for
the penalty parameter β (a small variation of β should not yield a very
different solution τ̂ ).

This stability of the solution with respect to the choice for β will be insured if
we consider the largest intervals [βi , βi−1), i > 1.

We use the following procedure:

1 for K = 1, 2, . . . ,KMAX , compute τ̂K , JK = J(τ̂K ,Y) and p̂K = pen(τ̂K ),

2 compute the sequence {Ki} and {βi}, and the lengths {lKi} of the intervals
[βi , βi−1),

3 consider the highest value of Ki such that lKi � lKj , for j > i .
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Adaptive choice for the penalty parameter: heuristic
approach I

Graphical method for selecting the dimension K could be summarized as follows:

1 examine the decrease of the contrast JK when K increases

2 select K for which JK ceases to significantly decrease.

This amounts to look for the maximal curvature of (pK , JK ),

Second derivative of that curve is linked to the length of the interval
([βi , βi−1), i > 1),

Looking for a change in the decrease amounts to look for a change in the slope
of the curve.
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Adaptive choice for the penalty parameter: heuristic
approach II

This requires a careful inspection of the curve, and is difficult to automatize.

Consider an alternative approach more easy to automatize

Principle of the method: model the decrease of the sequence of contrasts {JK}
when there is no change point in the series {Yt} and look for which value of K
this model adjusts the {JK}
No analytical solution for finding the distribution of the {JK}
Some simulations show that this sequence decreases as c1K + c2K log(K ).
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Adaptive choice for the penalty parameter: heuristic
approach III

 0
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 0.3

 0.4
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 0  5  10  15  20

Ten sequences of contrast function
{JK} computed from 10 sequences
of Gaussian iid. random variable
with coefficient of correlation
ρ = 0.5

The fit to the function
c1K + c2K log(K ) is almost perfect
(r 2 > 0.999). (estimated
coefficients ĉ1 and ĉ2 are different
for each of these series)
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Adaptive choice for the penalty parameter: heuristic
approach IV

Algorithm

For i = 1, 2, . . .,

1 Fit the model:
JK = c1K + c2K log(K ) + eK ,

to the series {JK ,K > Ki}, assuming that {eK} is a sequence of Gaussian iid.
and centered random variables.

2 Evaluate the probability that JKi−1 follows this model, i.e., the probability

PKi = P
(
eKi−1 > JKi−1 − ĉ1(Ki − 1) + ĉ2(Ki − 1) log(Ki − 1)

)
,

under the estimated model.

3 The estimated number of segments is the highest value of Ki such that the
P–value PKi is lower than a threshold α. (We set α = 10−7 and KMAX = 20)
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Application to the bivariate series of the FT100 and S&P
500 indices
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Adaptive detection of change-points
in multivariate series

Top: returns on FTSE 100

Bottom: returns on S&P 500
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Practical applications

On multivariate GARCH processes, this method detects the change points with
a great precision (with a greater precision than in the univariate case)

This method provides better results than parametric tests extended to the
multivariate case (e.g., the multivariate generalized likelihood ratio test)

On real data, the automatic method detects the significant changes (stock
market crashes)

However, the user could tune the level of resolution by choosing the level of
the P–value PKi .

Gilles Teyssière, Aarhus University Long–Memory Lectures Dependence and Change-Points in Volatility



Wavelet analysis for long-memory processes I

Definition

Let {Yt , t ∈ IR} be a second–order stationary process. This process is a
long–memory process if its spectrum fY (λ) is such that in a close positive
neighborhood of the zero frequency,

fY (λ) ∼ cf λ
−α, λ→ 0+, cf ∈ (0,∞),

or equivalently, if its autocorrelation function ρY (k) has the following hyperbolic
rate of decaya

ρY (k) � kα−1,

with α ∈ (0, 1).

axk � yk means that ∃ two constants C1,C2 such that C1yk 6 xk 6 C2yk , k →∞.
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Wavelet analysis for long-memory processes II

Statistical tools based on global statistics are not robust to trends, breaks, etc,

We then consider an alternative statistical method more robust to these
nonlinearities,

Wavelets based methods are robust to trend, change-points and nonlinearities

So that they allow us to adjudicate between long-range dependence,
non-stationarities, nonlinearities, change-points (Teyssiere and Abry, 2005).
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Wavelet estimator of d

The mother wavelet ψ0 has N moments of order zero, with N ≥ 1, i.e.,∫
tkψ0(t)dt ≡ 0, k = 0, . . . ,N − 1.

ψj,k is a family of waveforms
{
ψj,k = 2−j/2ψ0(2−j t − k)

}
, i.e., a collection of

dilations and translations of the mother wavelet ψ0

j = 1, . . . , J are the octaves, k ∈ ZZ

Discrete wavelet coefficients are defined by: dX (j , k) =

∫
IR

X (t)ψj,k (t) dt

Veitch an Abry (1999) estimator of α = 2d , based on the DWT and the
properties of independence of wavelet coefficients dX (j , k) of Gaussian
fractional processes.
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Daubechies wavelets
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Figure: Daubechies 2 (left) and Daubechies 4 (right)

We use here Daubechies wavelets,

Daubechies wavelets have a support of minimum size for a given number of N
vanishing moments.
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Moments of order zero of a wavelet

The moments of order zero N is a key variable for wavelet analysis.

This number has to be chosen after (visual) inspection of the series

By definition of N , the coefficients of any polynomial of order P < N are
equal to zero, dP (j , k) ≡ 0.

For a strongly dependent process (centered) Xt , the surimposition of a non
stationary polynomial does not affect the estimation of the long memory
parameter as long as the degree of the polynomial is less than the number of
non-null moments N .

We choose N for obtaining an estimate of the long-memory parameter which
cannot be affected by trends and non-stationarities.
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Example of strongly dependent time series with a trend
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Figure: Logarithm of the volume of transactions on AT&T
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Estimation of d

The process dX (j , k) is stationary (if N > (α− 1)/2)

For the largest octaves, its variance satisfies the following power law:

EdX (j , ·)2 = 2jαcf C , as 2j →∞, C =

∫
|λ|−α|Ψ0(λ)|2dλ,

(Ψ0(λ) is the Fourier transform of the mother wavelet ψ0.)

The scaling parameter α is estimated from the slope of the following linear
regression:

log2

(
EdX (j , ·)2

)
= jα + log2(cf C ) called “logscale diagram”

Estimation of this regression by weighted least squares
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Example of a logscale diagram
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Logscale Diagram,  N=2    [ (j
1
,j

2
)= (1,16),   α−est = 0.522,    Q= 0.2447 ]

Octave j

y
j
 

“Logscale diagram” of a fractional
Gaussian noise, d = 0.25

α̂ = 2d̂ = 0.522

We could select all octaves as the
scaling law appears from the first
octave.

As we will see later, for nonlinear
LRD processes the first octaves are
affected by the presence of
nonlinearities

For nonlinear LRD processes, the
scaling law clearly appears in the
largest octaves.
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Asymptotic distribution of the estimator

Define: SX (j) =
1

nj

nj∑
k=1

dX (j , k)2

nj : number of wavelet coefficients dX (j , k) available at octave j , nj = O(2−j T )

Wavelet estimator (for the range of octaves [j1, j2])

α̂W =

j2∑
j=j1

wj (log2 SX (j)− (ψ(nj/2)/ log 2− log2(nj/2)))

wj =
1

aj

S0j − S1

S0S2 − S2
1

, Sp =

j2∑
j=j1

jp/aj , aj = ζ(2, nj/2)

This estimator has “approximatively” the following asymptotic distribution:

(α̂− α) ∼ N

(
0,

1

T ln2(2)21−j1

)
,

j1 is the lowest octave, the long range behavior is captured by the octaves
greater than j1.

Gilles Teyssière, Aarhus University Long–Memory Lectures Dependence and Change-Points in Volatility



How to select the lowest octave j1 ?

If j1 is too small : strong bias as the interval contains some octave that do not
verify the scaling law, but only short term dependencies and non-linearities.

If j1 is too “large”: bias is reduced but the variance becomes large

Selection of j1 in relation with the problem of optimal bandwidth selection for
the local Whittle estimator in the frequency domain

The octave associated with the optimal bandwidth mopt
LW of the local Whittle

estimator is then equal to mopt
LW /T , and matches the octave 2−j1 .

Using mopt
LW we define the optimal lower octave :

jopt
1 =

[
log T − log mopt

LW

log 2

]
,

This gives satisfactory results. (So far, there is no alternative method)

Gilles Teyssière, Aarhus University Long–Memory Lectures Dependence and Change-Points in Volatility



Example: selecting j1 for nonlinear models I
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Logscale Diagram,  N=2    [ (j_1,j_2)=  (1,11),  Estimated scaling parameter = 0.251]

y_j estimated  
Confidence Intervals

Regression line

“Logscale diagram” of a
long-memory stochastic volatility
model (LMSV) with α = 2d = 0.90

α̂ = 2d̂ = 0.25,

α̂� α as we wrongly select all
octaves while the scaling law does
not appear in the first octaves,

The scaling law appears in the
largest octaves,

The first octaves are affected by the
short-range nonlinearities of the
LMSV.
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Example: selecting j1 for nonlinear models II

 0

 2

 4

 6

 8
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Logscale Diagram,  N=2    [ (j_1,j_2)=  (6,11),  Estimated scaling parameter = 0.818]

y_j estimated  
Confidence Intervals

Regression line

“Logscale diagram” of a
long-memory stochastic volatility
model (LMSV) α = 2d = 0.90

α̂ = 2d̂ = 0.818

We set j1 = 6 as the scaling law
appears after that octave.

Same issue is present for other
nonlinear LRD processes; See
Teyssière and Abry (2005) for
further details.
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Volume of transactions: how to select N ? I
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Logscale Diagram,  N=6    [ (j_1,j_2)=  (1,8),  Estimated scaling parameter = 0.6902]

y_j estimated  
Confidence Intervals

Regression line

Logscale diagram for the log-volume
of transactions on AT&T shares ,
j1 = 1, N = 6; α̂ = 0.6902

We select N = 6 because of the
trend (estimation results are stable
for N > 6)

We select all octaves as the scaling
law appears from the first octave.
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Volume of transactions: how to select N ? II
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Logscale Diagram,  N=10    [ (j_1,j_2)=  (1,8),  Estimated scaling parameter = 0.7941]

y_j estimated  
Confidence Intervals

Regression line

Logscale diagram for the log-volume
of transactions on IBM shares ,
j1 = 1, N = 10; α̂ = 2d̂ = 0.7941

We select N = 10 because of the
trend (estimation results are stable
for N > 10)

We select all octaves as the scaling
law appears from the first octave.
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Are volume and volatility sharing the same long-memory
properties ?

Previous works on the common long-memory properties of prices and volume

Both processes are supposed to inherit their long-memory properties from a
news arrival process (the so-called mixture of distribution hypothesis, MDH)

We apply the wavelet estimator to the same series used by Lobato and Velasco
(2000).
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Logscale diagrams for volatility series I
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Logscale Diagram,  N=2    [ (j
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)= (1,10),   α−est = −0.171,    Q= 0 ]

Octave j
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Logscale diagram for the absolute
returns on AT&T shares, j1 = 1,
N = 2; α̂ = 2d̂ = −0.171

It is obvious that the scaling law
does not appear from the first
octave

The volatility process is less “nice”
than the volume process.
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Logscale diagrams for volatility series II
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Logscale diagram for the absolute
returns on AT&T shares, j1 = 5,
N = 2; α̂ = 2d̂ = 0.642

Volume and volatility processes
appear to have different scaling
properties. (See Teyssière and Abry
(2005) for further details).
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Logscale diagrams for volatility series III
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Logscale diagram for the absolute
returns on IBM shares, j1 = 4,
N = 2; α̂ = 2d̂ = 0.363

Volume and volatility processes
appear to have different scaling
properties.

Volatility series appear to have a
lower degree of long-memory than
was is usually claimed using other
non robusts estimators. (See
Teyssière and Abry (2005) for other
examples).
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