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1 Introduction

The purpose of this chapter is to propose a unified framework for the study
of ARCH(∞) processes that are commonly used in the financial econometrics
literature. We extend the study, based on Volterra expansions, of univariate
ARCH(∞) processes by Giraitis et al. [GKL00] and Giraitis and Surgailis
[GS02] to the multi-dimensional case.

Let {ξt}t∈Z be a sequence of real valued random matrices independent and
identically distributed of size d×m, {aj}j∈N∗ be a sequence of real matrices
m× d, and a be a real vector of dimension m. The vector ARCH(∞) process
is defined as the solution to the recurrence equation:

Xt = ξt



a+

∞
∑

j=1

ajXt−j



 . (1)

The following section 2 displays a chaotic expansion solution to this equa-
tion; we also consider a random fields extension of this model. Some approx-
imations of this solutions are listed in the next section 3, where we consider
approximations by m-dependent sequences, coupling results and approxima-
tions by Markov sequences. Section 4 details the weak dependence properties
of the model and section 5 provides an existence and uniqueness condition
for the solution of the previous equation; in that case, long range dependence
may occur. The end of this section is dedicated to review examples of this
vector valued model.

The vector ARCH(∞) model nests a large variety of models, the two first
extensions being obvious:

(A1). The univariate linear ARCH(∞) (LARCH) model, where the Xt and aj

are scalar,
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(A2). The bilinear model, with

Xt = ζt



α+

∞
∑

j=1

αjXt−j



+ β +

∞
∑

j=1

βjXt−j ,

where all variables are scalar, and ζt are iid centered innovations. We set

ξt = (ζt, 1) , a =

(

α
β

)

, aj =

(

αj

βj

)

.

In that case, the expansion (3) is the same as the one used by Giraitis
and Surgailis [GS02].

(A3). With a suitable re-parameterization, this vector ARCH(∞) nests the stan-
dard GARCH–type processes used in the financial econometrics literature
for modeling the non-linear structure of the conditional second moments.
The GARCH(p, q) model is defined as

rt = σtεt ,

σ2t =

p
∑

j=1

βjσ
2
t−j + γ0 +

q
∑

j=1

γjr
2
t−j , γ0 > 0 , γj ≥ 0 , βi ≥ 0 ,

where the εt are centered and iid. This model is nested in the class of
bilinear models with the following re-parameterization

α0 =
γ0

1−∑βi
,
∑

αiz
i =

∑

γiz
i

1−∑βizi
,

see Giraitis et al. [GLS05]. The covariance function of the sequence {r2t }
has an exponential decay, which is implied by the exponential decay of
the sequence of weights αj ; see Giraitis et al. [GKL00].

(A4). The ARCH(∞) model, where the sequence of weights βj might have either
a exponential decay or a hyperbolic decay.

rt = σtεt , σ2t = β0 +

∞
∑

j=1

βjr
2
t−j ,

with the following parameterization

Xt = r2t , ξt =

(

ε2t − λ1
κ

, 1

)

, a =

(

κβ0
λ1β0

)

, aj =

(

κβj

λ1βj

)

,

where the ε are centered and iid, λ1 = E(ε20), and κ2 = var(ε20). Note that
the first coordinate of ξ0 is thus a centered random variable. Conditions
for stationarity of the unidimensional ARCH(∞) model have been derived
using Volterra expansions by Giraitis et al. [GKL00] and Giraitis and
Surgailis [GS02]. The present paper is a multidimensional generalization
of these previous works.
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(A5). We can consider models with several innovations and variables such as:

Zt = ζ1,t



α+

∞
∑

j=1

α1
jZt−j



+ µ1,t



β +

∞
∑

j=1

β1
jYt−j



+ γ +

∞
∑

j=1

γ1jZt−j ,

Yt = ζ2,t



α+

∞
∑

j=1

α2
jYt−j



+ µ2,t



β +

∞
∑

j=1

β2
jZt−j



+ γ +

∞
∑

j=1

γ2jYt−j .

This model is straightforwardly described through equation (1) with d = 2

andm = 3. Here ξt =

(

ζ1,t µ1,t 1
ζ2,t µ2,t 1

)

is a 2×3 iid sequence, aj =





α1
j α2

j

β1
j β2

j

γ1j γ2j





is a 3 × 2 matrix and a =





α
β
γ



 is a vector in IR3 and the process

Xt =

(

Zt

Yt

)

is a vector of dimension 2. Dimensions m = 3 and d = 2 are

only set here for simplicity. Replacing m = 3 by m = 6 would allow to
consider different coefficients α, β and γ for both lines in this system of
two coupled equations.
This generalizes the class of multivariate ARCH(∞) processes, defined in
the p-dimensional case as:

Rt = Σ
1
2

t εt ,

where Rt is a p–dimensional vector, Σt is a p× p positive definite matrix,
and εt is a p–dimensional vector. Those models are formally investigated
by Farid Boussama in [Bou98]; published references include [Bou00] and
[EK96].
This model is of interest in financial econometrics as the volatility of asset
prices of linked markets, e.g., major currencies in the Foreign Exchange
(FX) market, are correlated, and in some cases display a common strong
dependence structure; see [Tey97]. This common dependence structure can
be modeled with the assumption that the innovations ε1, . . . , εp are cor-
related. An (empirically) interesting case for the bivariate model (Xt, Yt)
is obtained with the assumption that the (ζ1,t, ζ2,t) are cross-correlated.

2 Existence and Uniqueness in Lp

In the sequel, we set A(x) =
∑

j≥x ‖aj‖, A = A(1), where ‖ · ‖ denotes the
matrix norm.

Theorem 1. Let p > 0, we denote
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ϕ =
∑

j≥1
‖aj‖p∧1 (E‖ξ0‖p)

1
p∧1 . (2)

If ϕ < 1, then a stationary solution in Lp to equation (1) is given by:

Xt = ξt



a+

∞
∑

k=1

∑

j1,...,jk≥1
aj1ξt−j1 · · · ajkξt−j1−···−jk · a



 . (3)

Proof. The norm used for the matrices is any multiplicative norm. We have
to show that expression (3) is well defined under the conditions stated above,
converges absolutely in Lp, and that it satisfies equation (1).
Step 1. We first show that expression (3) is well defined (after the second line
we omit to precise the norms). For p ≥ 1, we have
∑

j1,...,jk≥1
‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖m×m

≤
∑

j1,...,jk≥1
‖aj1‖m×d · · · ‖ajk‖m×d‖ξt−j1‖d×m · · · ‖ξt−j1−···−jk‖d×m .

The series thus converges in norm Lp because

∞
∑

k=1

∑

j1,...,jk≥1
(E‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖p)

1/p

≤
∞
∑

k=1

∑

j1,...,jk≥1
‖aj1‖ · · · ‖ajk‖(E‖ξt−j1‖p)1/p · · · (E‖ξt−j1−···−jk‖p)1/p

≤
∞
∑

k=1

∑

j1,...,jk≥1
‖aj1‖ · · · ‖ajk‖ (E‖ξ0‖p)

k
p ≤

∞
∑

k=1

ϕk .

The series
∑∞

k=1 ϕ
k is finite since ϕ < 1, hence the series (3) converges in Lp.

For p < 1, the convergence is defined through the metric dp(U, V ) =
E‖U − V ‖p between vector valued Lp random variables U, V and we start
from




∑

j1,...,jk≥1
‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖





p

≤
∑

j1,...,jk≥1
‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖p ,

and we use the same arguments as for p = 1.
Step 2. We now show that equation (3) is solution to equation (1):

Xt = ξt



a+

∞
∑

k=1

∑

j1,...jk≥1
aj1ξt−j1 · · · ajkξt−j1−···−jk · a




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= ξt



a+
∑

j≥1
ajξt−j+

+

∞
∑

k=2

∑

j1≥1
ajξt−j

∑

j2,...,jk≥1
aj2ξt−j−j2 · · · ajkξt−j−j2−···−jk · a





= ξt



a+
∑

j≥1
aj×

ξt−j

{

a +

∞
∑

k=2

∑

j2,...,jk≥1
aj2ξ(t−j)−j2 · · · ajkξ(t−j)−j2−···−jk · a

}





= ξt

(

a+
∑

j≥1
ajXt−j

)

.

Remark 1. The uniqueness of this solution is not demonstrated without addi-
tional condition; see Theorem 2 and section 5 below.

Theorem 2. Assume that p ≥ 1 then from (2), ϕ =
∑

j ‖aj‖‖ξ0‖p. Assume
ϕ < 1. If a stationary solution (Yt)t∈ZZ to equation (1) exists (a.s.), if Yt is
independent of the sigma-algebra generated by {ξs; s > t}, for each t ∈ ZZ,
then this solution is also in Lp and it is (a.s.) equal to the previous solution
(Xt)t∈ZZ defined by equation (3).

Proof. Step 1. We first prove that ‖Y0‖p < ∞. From equation (1) and from
{Yt}t∈ZZ’s stationarity, we derive

‖Y0‖p ≤ ‖ξ0‖p



‖a‖+
∞
∑

j=1

‖aj‖‖Y0‖p



 <∞ ,

hence, the first point in the theorem follows from:

‖Y0‖p ≤
‖ξ0‖p‖a‖
1− ϕ

<∞ .

Step 2. As in [GKL00] we write recursively Yt = ξt

(

a+
∑

j≥1 ajYt−j

)

=

Xm
t + Sm

t , with

Xm
t = ξt



a+

m
∑

k=1

∑

j1,··· ,jk≥1
aj1ξt−j1 · · · ajkξt−j1···−jka



 ,

Sm
t = ξt





∑

j1,··· ,jm+1≥1
aj1ξt−j1 · · · ajmξt−j1···−jmajm+1Yt−j1···−jm



 .
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We have

‖Sm
t ‖p ≤ ‖ξ‖p

∑

j1,··· ,jm+1≥1
‖aj1‖ · · · ‖ajm+1

‖‖ξ‖mp ‖Y0‖p = ‖Y0‖pϕm+1 .

We recall the additive decomposition of the chaotic expansion Xt in equation
(3) as a finite expansion plus a negligible remainder that can be controlled
Xt = Xm

t +Rm
t where

Rm
t = ξt





∑

k>m

∑

j1,··· ,jk≥1
aj1ξt−j1 · · · ajkξt−j1···−jka



 ,

satisfies

‖Rm
t ‖p ≤ ‖a‖‖ξ0‖p

∑

k>m

ϕk ≤ ‖a‖‖ξ0‖p
ϕm

1− ϕ
→ 0 .

Then, the difference between those two solutions is controlled as a function of
m with Xt − Yt = Rm

t − Sm
t , hence

‖Xt − Yt‖p ≤ ‖Rm
t ‖p + ‖Sm

t ‖p

≤ ϕm

1− ϕ
‖a‖‖ξ0‖p + ‖Y0‖pϕm ≤ 2 ϕm

1− ϕ
‖a‖‖ξ0‖p ,

and thus Yt = Xt a.s.

We also consider the following extension of equation (1) to random fields
{Xt}t∈ZD :
Lemma 1. Assume that aj are m × d-matrices now defined for each j ∈
Z

D \ {0}. Fix an arbitrary norm ‖ · ‖ on ZD. We extend the previous function
A to A(x) =

∑

‖j‖≥x ‖aj‖, A = A(1) and we suppose with p = ∞ that ϕ =

A‖ξ0‖∞ < 1. Then the random field

Xt = ξt



a+

∞
∑

k=1

∑

j1 (=0

· · ·
∑

jk (=0

aj1ξt−j1 · · · ajkξt−j1−···−jka



 (4)

is a solution to the recursive equation:

Xt = ξt



a+
∑

j (=0

ajXt−j



 , t ∈ ZD . (5)

Moreover, each stationary solution to this equation is also bounded and equals
Xt, a.s.

The proof is the same as before, we first prove that any solution is bounded
and we expand it as the sum of the first terms in this chaotic expansion, up to
a small remainder (wrt to sup norm); the only important modification follows
from the fact that now j1 + · · ·+ jℓ may really vanish for nonzero ji’s which
entails that the bound with expectation has to be replaced by upper bounds.
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Remark 2. In the previous lemma, the independence of the ξ’s does not play
a role. We may have stated it for arbitrary random fields {ξt} such that
‖ξt‖∞ ≤M for each t ∈ ZD; such models with dependent inputs are interest-
ing but assumptions on the innovations are indeed very strong. This means
that such models are heteroscedastic but with bounded innovations: according
to [MH04], this restriction excludes extreme phenomena like crashes and bub-
bles. Mandelbrot school has shown from the seminal paper [Man63] that asset
prices returns do not have a Gaussian distribution as the number of extreme
deviations, the so–called “Noah effects”, of asset returns is far greater than
what is allowed by the Normal distribution, even with ARCH–type effects. It
is the reason why this extension is not pursued in the present paper.

3 Approximations

This section is aimed to approximate a sequence {Xt} given by (3), solu-
tion to eqn. (1) by a sequence {X̃t}. We shall prove that we can control the
approximation error E‖Xt − X̃t‖ within reasonable small bounds.

3.1 Approximation by Independence

The purpose is to approximate Xt by a random variable independent of X0.
We set

X̃t = ξt



a+

∞
∑

k=1

∑

j1+···+jk<t

aj1ξt−j1 · · · ajkξt−j1−···−jka



 .

Proposition 1. Define ϕ from (2). A bound for the error is given by:

E‖Xt − X̃t‖ ≤ E‖ξ0‖
(

E‖ξ0‖
t−1
∑

k=1

kϕk−1A

(

t

k

)

+
ϕt

1− ϕ

)

‖a‖ .

Furthermore, we have as particular results that if b, C > 0 and q ∈ [0, 1), then
for a suitable choice of constants K, K ′:

E‖Xt − X̃t‖ ≤
{

K (log(t))b∨1

tb
, for Riemannian decays A(x) ≤ Cx−b ,

K ′(q ∨ ϕ)
√

t , for geometric decays A(x) ≤ Cqx .

Remark 3. Note that in the first case this decay is essentially the same Rie-
mannian one while it is sub-geometric (like t -→ e−c

√
t) when the decay of the

coefficients is geometric.

Remark 4. In the paper Riemannian or Geometric decays always refer to the
previous relations.
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Idea of the Proof. A careful study of the terms in Xt’s expansion which do
not appear in X̃t entails the following bound with the triangular inequality.
For this, quote that if j1 + · · · + jk ≥ t for some k ≥ 1 then, at least, one of
the indices j1, . . . , or jk is larger than t/k. The additional term corresponds
to those terms with indices k > t in the expansion (3).

The following extension to the case of the random fields determined in
lemma 1 is immediate by setting

X̃t = ξt






a+

∞
∑

k=1

∑

j1, . . . , jk #= 0

‖j1‖ + · · · + ‖jk‖ < ‖t‖

aj1ξt−j1 · · · ajkξt−j1−···−jka






.

Proposition 2. The random field (Xt)t∈ZD defined in lemma 1 satisfies:

E‖Xt − X̃t‖ ≤ E‖ξ0‖



‖ξ0‖∞
∑

1≤k<‖t‖
kϕk−1A

(‖t‖
k

)

+
ϕ‖t‖

1− ϕ



 ‖a‖ .

3.2 Coupling

First note that the variable X̃t which approximates Xt does not follow the
same distribution. For dealing with this issue, it is sufficient to construct a
sequence of iid random variables ξ′i which follow the same distribution as the
one of the ξi, each term of the sequence being independent of all the ξi. We
then set

ξ∗t =

{

ξt if t > 0 ,
ξ′t if t ≤ 0 ,

X∗
t = ξt



a+

∞
∑

k=1

∑

j1,...,jk

aj1ξ
∗
t−j1 · · · ajkξ

∗
t−j1−···−jk

a



 .

Coefficients τt for the τ–dependence introduced by Dedecker and Prieur
[DP01] are easily computed. In this case, we find the upper bounds from
above, up to a factor 2:

τt = E‖Xt −X∗
t ‖ ≤ 2E‖ξ0‖

(

E‖ξ0‖
t−1
∑

k=1

kϕk−1A

(

t

k

)

+
ϕt

1− ϕ

)

‖a‖ ;

see also Rüschendorf [RüS], Prieur [Pri05]. These coefficients τk are defined
as τk = τ(σ(Xi, i ≤ 0), Xk) where for each random variable X and each
σ-algebraM one sets

τ(M, X) = E

{

sup
Lipf≤1

∣

∣

∣

∣

∫

f(x)PX|M(dx)−
∫

f(x)PX(dx)

∣

∣

∣

∣

}

where PX and PX|M denotes the distribution and the conditional distribution
of X on the σ–algebraM and Lipf = supx (=y |f(x)− f(y)|/‖x− y‖.
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3.3 Markovian Approximation

We consider equation (1) truncated at the order N : Yt = ξt(a+
∑N

j=1 ajYt−j).
The solution considered above can be rewritten as

XN
t = ξt



a+

∞
∑

k=1

∑

N≥j1,...,jk≥1
aj1ξt−j1 · · · ajkξt−j1−···−jka



 .

We can easily find an upper bound of the error: E‖Xt−XN
t ‖ ≤
∑∞

k=1 A(N)
k.

As in proposition 1, in the Riemannian case, this bound of the error writes
as C
∑∞

k=1 N
−bk ≤ C/(N b − 1) with b > 1, while in the geometric case, this

writes as CqN/(1− qN ) ≤ CqN/(1− q), 0 < q < 1.

4 Weak Dependence

Consider integers u, v ≥ 1. Let i1 < · · · < iu, j1 < · · · < jv be integers with
j1−iu ≥ r, we set U and V for the two random vectors U = (Xi1 , Xi2 , . . . , Xiu)
and V = (Xj1 , Xj2 , . . . , Xjv ). We fix a norm ‖ · ‖ on R

d. For a function
h :
(

R
d
)w → R we set

Lip(h) = sup
x1,y1,...,xw,yw∈Rd

|h(x1, . . . , xw)− h(y1, . . . , yw)|
∑w

i=1 ‖xi − yi‖
.

Theorem 3. Assume that the coefficient defined by (2) satisfies ϕ < 1. The
solution (3) to the equation (1) is θ−weakly dependent, see [DD03]. This
means that:

|cov(f(U), g(V ))| ≤ 2v‖f‖∞Lip(g)θr ,

for any integers u, v ≥ 1, i1 < · · · < iu, j1 < · · · < jv such that j1 − iu ≥ r;
with

θr = E‖ξ0‖
(

E‖ξ0‖
r−1
∑

k=1

kϕk−1A
( r

k

)

+
ϕr

1− ϕ

)

‖a‖ .

Proof. For calculating a weak dependence bound, we approximate the vector
V by the vector V̂ = (X̂j1 , X̂j2 , . . . , X̂jv ), where we set

X̂t = ξt



a+
∞
∑

k=1

∑

j1+···+jk<s

aj1ξt−j1 · · · ajkξt−j1−···−jka



 .

Note that for each index j ∈ Z, X̂j is independent of (Xj−s)s≥r. Note that

for 1 ≤ k ≤ v, E‖Xjk − X̂jk‖ ≤ θr defined in theorem 3. Then
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|cov(f(U), g(V ))| ≤
∣

∣

∣E

(

f(U)(g(V )− g(V̂ )
)

− E(f(U))E(g(V )− g(V̂ ))
∣

∣

∣

≤ 2‖f‖∞E
∣

∣

∣g(V )− g(V̂ )
∣

∣

∣

≤ 2‖f‖∞Lip(g)
v
∑

k=1

E‖Xjk − X̂jk‖

≤ 2v‖f‖∞Lip(g)θr .

Remark 5. We obtain explicit expressions for this bound in Proposition 1 for
the Riemannian and geometric decay rates.

Remark 6. In the case of random fields the η-weak dependence condition in
[DL99] or [DL02] holds in a similar way with

ηr = 2E‖ξ0‖



‖ξ0‖∞
∑

k<r/2

kϕk−1A
( r

k

)

+
ϕ[r/2]

1− ϕ



 ‖a‖ ,

which means that the previous bound now reads

|cov(f(U), g(V ))| ≤
(

u‖g‖∞Lip(f) + v‖f‖∞Lip(g)
)

ηr .

The argument is the same except for the fact that now Û and V̂ are inde-
pendent vectors with truncations at a level s = [r/2] but V̂ and U are not
necessarily independent (recall that independence of U and V̂ follows from
s ≥ r in the proof for the causal case). This point makes the previous bound a
bit more complicated than the one in theorem 3 and it explains the appearance
of the factor 2 in the expression of ηr.

Remark 7. These weak dependence conditions imply various limit theorems
both for partial sums processes and for the empirical process (see [DL99],
[DD03] and [DL02]).

5 L2 Properties

For the univariate case, the uniqueness of a stationary solution to (1) has been
proved by [GKL00]. We present a criterion for existence and uniqueness of a
solution in L2. This solution is no longer necessarily weakly dependent.

Theorem 4. Assume that the iid sequence {ξt} is centered and the spectral
radius ρ(S) of the matrix S =

∑∞
k=1 a

′
kE(ξ

′
kξk)ak satisfies ρ(S) < 1. Then

there exists a unique stationary solution in L2 to equation (1) given by (3).

Remark 8.

• The assumption ρ(S) < 1 implies ξt ∈ L2 for t ∈ Z.
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• The bilinear model of Example 2 is shown in [GS02] to display the double
long memory property when the series {αj} and {βj} are not summable
but satisfy the condition

∞
∑

j=1

(

α2
jEζ

2
0 + β2

j

)

< 1 .

As a particular case, the squares of the LARCH(∞) process in Exam-
ple 1 display long–range dependence. [GS02] prove that the corresponding
partial sums process converges to the fractional Brownian Motion with
normalization ≫ √n.

• The GARCH(p, q) models in example 3, are always weakly dependent, in
the sense of [DL99].

• Note that [GKL00] and [GS02] prove that the stationary ARCH(∞) model
(Example 4), is not long range dependent in the previous sense; more
precisely the partial sums process, normalized with

√
n, converges to the

Brownian Motion.

Proof. Step 1: existence. Define T = E(ξ′kξk). Consider the chaotic solution (3)
and set

Ct(k2, . . . , kℓ) = ξtak2ξt−k2 · · · akℓξt−k2···−kℓa .

Write E(X ′
tXt) = a′Eξ′tξta+B = a′Ta+B, where

B =
∑

ℓ,k1,...,kℓ≥1
EC ′

t−k1(k2, . . . , kℓ)a
′
k1Tak1Ct−k1(k2, . . . , kℓ)

=
∑

ℓ,k1,...,kℓ

EC ′
t−k1(k2, . . . , kℓ)a

′
k1Eξ

′
t−k1ξt−k1ak1Ct−k1(k2, . . . , kℓ)

=
∑

ℓ,k1,...,kℓ

EC ′
t−k1(k2, . . . , kℓ)

(

Ea′k1ξ
′
t−k1ξt−k1ak1

)

Ct−k1(k2, . . . , kℓ)

=
∑

ℓ,k1,...,kℓ

EC ′
t(k2, . . . , kℓ)

(

Ea′k1ξ
′
t−k1ξt−k1ak1

)

Ct(k2, . . . , kℓ)

=
∑

ℓ,k2,...,kℓ

EC ′
t(k2, . . . , kℓ)SCt(k2, . . . , kℓ)

≤ ρ(S)
∑

ℓ,k2,...,kℓ

EC ′
t(k2, . . . , kℓ)Ct(k2, . . . , kℓ)

≤ E(ξ0a)′(ξ0a)
∞
∑

ℓ=1

ρ(S)ℓ (recursively)

≤ a′aρ(T )
∞
∑

ℓ=1

ρ(S)ℓ ,

hence,
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E(X ′
tXt) ≤ a′Ta+ a′a

ρ(T )

1− ρ(S)
<∞ . (6)

In the previous relations we used both the fact that the ξt are centered and
iid and the relation v′Av ≤ v′vρ(A) which holds if A denotes a non-negative
d×d matrix and v ∈ Rd. This conclude the proof of the existence of a solution
in L2.
Step 2: L2 uniqueness. Let now X1

t and X2
t be two solutions to equation (1)

in L2. Define X̃t = X1
t −X2

t , then X̃t is solution to

X̃t = ξtÃt , Ãt =

∞
∑

k=1

akX̃t−k . (7)

Now we use (7) and the fact that X̃t is centered and thus EX̃sX̃t = 0 for s 3= t
to derive

E

(

(X̃tg)
′(X̃tg)
)

=

∞
∑

k=1

g′E
(

X̃ ′
t−ka

′
t−kTat−kX̃t−k

)

g

=

∞
∑

k=1

g′E
(

X̃ ′
ta
′
t−kTat−kX̃t

)

g = g′E
(

X̃ ′
tSX̃t

)

g

= E

(

(X̃tg)
′S(X̃tg)

)

≤ ρ(S)E
(

(X̃tg)
′(X̃tg)
)

.

From equation (6), this expression is finite and thus the assumption ρ(S) < 1
concludes the proof.

Remark 9. The proof does not extend to the case of random fields because
in this case the previous arguments of independence cannot be used. In that
case we cannot address the question of uniqueness.

The previous L2 existence and uniqueness assumptions do not imply that
∑

j≥1 ‖aj‖ < ∞, thus this situation is perhaps not a weakly dependent one.
Giraitis and Surgailis [GS02], prove results both for the partial sums processes
of Xt and X2

t − EX2
t . In our vector case the second problem is difficult and

will be addressed in a forthcoming work. However Xt is now the increment
of a (vector valued-)martingale and thus we partially extend Theorem 6.2 in
[GS02], providing a version of Donsker’s theorem for partial sums processes
of {Xt}.

Proposition 3. Let the assumptions of Theorem 4 hold. Define Sn(t) =
∑

1≤i≤nt Xi for 0 ≤ t ≤ 1. Then Sn(t)/
√

varSn(t) converges to ΣW (t), for

0 ≤ t ≤ 1 and where W (t) is a Rd valued Brownian motion and Σ is a sym-
metric non negative matrix such that Σ2 is the covariance matrix of X0. The
convergence holds for finite dimensional distributions.

Remark 10.
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• The convergence only holds for any k-tuples (t1, . . . , tk) ∈ [0, 1]k and since
the section is related to L2 properties we cannot use the tightness argu-
ments in [GS02] to obtain the Donsker theorem; indeed tightness is ob-
tained through moment inequalities of order p > 2. Lp existence conditions
are obtained in [GS02] for the bilinear case if p = 4; the method is based
on the diagram formula and does not extend simply to this vector valued
case. A bound for the moments of order p > 2 of the partial sum process
Sn(t) can be obtained using Rosenthal inequality, Theorem 2.11 in [HH80],
if E‖Xt‖p < ∞. This inequality would imply the functional convergence
in the Skohorod space D[0, 1] if p > 2.

• If Eξ0 3= 0 (as for the case of the bilinear model in [GS02]), we may write

Xt = ∆Mt + Eξ0

(

a+
∑∞

j=1 ajXt−j

)

where

∆Mt = (ξt − Eξt)



a+

∞
∑

j=1

ajXt−j





is a martingale increment. This martingale also obeys a central limit the-
orem. then,

n−1/2Sn(t)→ Σ̄W (t) ,

where W (t) is a vector Brownian motion, where Σ̄′Σ̄ = Σ. If Eξ0 = 0 this
is a way to prove proposition 3, which is a multi-dimensional extension of
the proof in [GS02].
For the case of the bilinear model, Giraitis and Surgailis also prove the
(functional) convergence of the previous sequence of process to a Fractional
Brownian Motion in [GS02]. For this, Riemannian decays of the coefficients
are assumed. The covariance function of the process is also completely
determined to prove such results; this is a quite difficult point to extend
to our vector valued frame.

• A final comment concerns the analogue for powers of Xt which, if suit-
ably normalized, are proved to converge to some higher order Rosenblatt
process in [GS02] for the bilinear case. We have a structural difficulty to
extend it; the only case which may reasonably be addressed is the real
valued one (d = 1), but it also presents very heavy combinatorial diffi-
culties. Computations for the covariances of the processes (Xk

t )t∈Z will be
addressed in a forthcoming work in order to extend those results.

Acknowledgements. The authors are grateful to the referees for their valu-
able comments.
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