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Abstract. We consider a class of microeconomic models with interacting agents which
replicate the main properties of asset prices time series: non-linearities in levels and
common degree of long-memory in the volatilities and co-volatilities of multivariate
time series. For these models, long-range dependence in asset price volatility is the
consequence of swings in opinions and herding behavior of market participants, which
generate switches in the heteroskedastic structure of asset prices. Thus, the observed
long-memory in asset prices volatility might be the outcome of a change-point in the
conditional variance process, a conclusion supported by a wavelet anaysis of the volatil-
ity series. This explains why volatility processes share only the properties of the second
moments of long-memory processes, but not the properties of the first moments.

1 Long-Range Dependence in Finance

Asset prices time series are characterized by several features: leptokurtic distri-
bution, nonlinear variations, volatility clustering, unit roots in the conditional
mean, and strong dependence in the volatility. These empirical features have
been documented in [38,39], [48], [9], [22,23], [3] among others.

Daily prices Pt are modeled by martingale processes, i.e., E(Pt+1|It) = Pt,
where It denotes the information set available at time t. This property is termed
as ‘Efficient Market Hypothesis’, the content of It defining the type of market
efficiency considered, see e.g., Fama [13]. As a consequence, the returns Rt =
log(Pt/Pt−1) are uncorrelated and unpredictable.

However, the power transformation |Rt|δ displays strong dependence, the
degree of which is the highest for δ = 1. This empirical feature, termed as
‘Taylor effect’ [48], motivated the use of the class of long-memory volatility
models introduced by Robinson [45], and developed in [22], [10], [18] and other
works.

This statistical univariate approach was incomplete, as a multivariate anal-
ysis, pioneered by Teyssière [50,51], revealed that several time series share a
common degree of strong dependence in their conditional variances and covari-
ances. This regularity suggested the presence of a common structural model
generating these features.

Furthermore, the series |Rt|δ differ from standard long-range dependent,
henceforth LRD, processes: while the autocorrelation function and the spec-
trum of the series |Rt|δ display a LRD-type behavior, the series |Rt|δ are not
trended unlike standard LRD processes. Recent works, see [42], [34], [25], [32],
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considered the change-point problem for volatility processes, as the class of non-
homogenous stochastic variance processes is also able to match the empirical
properties of asset prices returns.

These empirical results motivated further research for devising structural mi-
croeconomic models explaining these features. Kirman and Teyssière [31,29,30]
produced a model, based on microeconomic models with interacting agents,
which generates these empirical properties of asset prices.

This chapter is organized as follows. Section 2 reviews some statistical meth-
ods used for testing for long-range dependence and for the presence of a change-
point in the volatility process. Section 3 presents the class of microeconomic
models generating the empirical property of common long-range dependence in
multivariate asset price volatility. Simulation results for our models are given in
Sect. 4.

2 Long-Range Dependent vs. Change-Point Processes

A stationary process Yt is called a stationary process with long-memory if its
autocorrelation function, henceforth ACF, ρ(k) has asymptotically the following
hyperbolic rate of decay, see [2], [20], [21], [26], [46]:

ρ(k) ∼ L(k)k2d−1 as k → ∞, (1)

where L(k) is a slowly varying function,1 and d ∈ (0, 1/2) is the long-memory
parameter which governs the slow rate of decay of the ACF and then parsimo-
niously summarizes the degree of long-range dependence of the series. Equiva-
lently, the spectrum f(λ) of a long-memory process can be approximated in the
neighborhood of the zero frequency as

f(λ) ∼ Gλ−2d, as λ→ 0+, 0 < G <∞. (2)

2.1 Statistical Inference

Since the statistical characteristics of volatility processes are more complex than
the ones of standard parametric long-memory processes, we resort in this study
to semiparametric statistical tools which require mild assumptions on the process
generating the data, henceforth DGP.

Several tests for stationarity against long-range dependent alternatives have
been proposed by Lo [37], Kwiatkowski et al. [36], and Giraitis, Kokoszka, Leipus
and Teyssière [15,16]. These statistics are based on the partial sum process Sk =∑k

t=1(Yt − Ȳ ) and the assumption that under the null hypothesis of stationarity,
the standardized partial sum process satisfies a functional central limit theorem.
Lo [37] considered the standardized range of Sk, i.e.,

R/S(q) =
1

ŝT (q)

[
max

1≤k≤T
Sk − min

1≤k≤T
Sk

]
=

R̂T

ŝT (q)
. (3)

1 A function L(k), k ≥ 0, is called slowly varying function if L(λk)/L(k) → 1 as
k → ∞, ∀λ > 0.
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Kwiatkowski et al. [36] considered the standardized second moment of Sk:

KPSS(q) =
1

T 2ŝ2T (q)

T∑
k=1

S2
k =

M̂T

T ŝ2T (q)
, (4)

while Giraitis et al. [16] considered the standardized variance of Sk:

V/S(q) =
1

T 2ŝ2T (q)


 T∑

k=1

S2
k − 1

T

(
T∑

k=1

Sk

)2

 =

V̂T

T ŝ2T (q)
, (5)

where ŝ2T (q) is the heteroskedastic and autocorrelation consistent variance esti-
mator, see [44]:

ŝ2T (q) = T
−1

T∑
i=1

(Yi − Ȳ )2 + 2
q∑

i=1

ωi(q)γ̂i with ωi(q) = 1 − 1
q + 1

, (6)

where the sample auto-covariances γ̂i at lag i account for the possible short-range
dependence up to the qth order.

Under the null hypothesis of no long-range dependence, the R/S statistic
has the following asymptotic distribution: T−1/2R/S(q) d→max0≤t≤1W

0(t) −
min0≤t≤1W

0(t), i.e., the range of a Brownian bridge W 0(t) = W (t) − tW (1),
on the unit interval, KPSS(q) d→UKPSS =

∫ 1
0 (W

0(t))2dt, while V/S(q) d→UV/S

=
∫ 1
0 (W

0(t))2dt− (
∫ 1
0 W

0(t)dt)2. The V/S statistic is less sensitive to the choice
of the truncation order q than the R/S statistic, and is more powerful than
the KPSS statistic. Furthermore, E(UKPSS) = 1/6, V (UKPSS) = 1/45, while
E(UV/S) = 1/12 and V (UV/S) = 1/360. The smaller variance of the random
variable V/S might explain its superior power for small samples.

The R/S statistic has been used by Mandelbrot and his co-authors, see [40],
for estimating the degree of long-range dependence d. Define ŝ2T = ŝ2T (0), then
ŝ2T → Var(Y ). Since

Sk =
k∑

j=1

(Yj − EYj) − k

T

T∑
j=1

(Yj − EYj), (7)

and
1

T 1/2+d

[Tt]∑
j=1

(Yj − EYj)
D[0,1]−→ CW1/2+d(t), (8)

where C is a positive constant, and
D[0,1]−→ means weak convergence in the space

D[0, 1] endowed with Skorokhod topology. Then

R̂T

T 1/2+d

d→ C

[
max
0≤t≤1

W 0
1/2+d(t) − min

0≤t≤1
W 0

1/2+d(t)
]
, (9)
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W 0
1/2+d(t) being the fractional Brownian bridge, defined as

W 0
1/2+d(t) =W1/2+d(t) − tW1/2+d(1). (10)

Thus,

1
T 1/2+d

R̂T

ŝT

d→
C
[
max0≤t≤1W

0
1/2+d(t) − min0≤t≤1W

0
1/2+d(t)

]
Var(Y )1/2 , (11)

Equation (11) constitutes a theoretical foundation for the R/S estimator.
Taking logarithms of both sides yields the heuristic identity:

log
(
R̂T /ŝT

)
≈
(
1
2
+ d

)
log T + constant, as T → ∞, (12)

Denote d̂R/S = (log(R̂T /ŝT )/ log T )− 1/2, then d̂R/S − d = OP (1/ log T ). Thus,
1/2 + d can be interpreted as the slope of a regression line of log(R̂T /ŝT ) on
log T .

Giraitis, Kokoszka, Leipus and Teyssière [17] suggested to extend this prin-
ciple to the KPSS and the V/S statistics. By (8)

M̂T

T 1+2d

d→ C2
∫ 1

0

[
W 0

1/2+d(t)
]2
dt. (13)

Define d̂KPSS = (log(M̂1/2
T /ŝT )/ log T )−1/2, we get d̂KPSS −d = OP (1/ log T ).

Thus, the slope of the regression line of log(M̂1/2
T /ŝT ) on log T estimates d+1/2.

Similarly, the regression of log(V̂ 1/2
T /ŝT ) on log T estimates d + 1/2. Setting

d̂V/S = (log(V̂ 1/2
T /ŝT )/ log T ) − 1/2, we get d̂V/S − d = OP (1/ log T ).

The technical details of the implementation of these ‘pox-plot’ estimators are
described in [2] and [17]. These semiparametric estimators have a few drawbacks.
There is no formal asymptotic theory for them, and they have the slow rate of
convergence of order log(T ). For that reason, we complete the empirical study
of the long-range dependent properties of our microeconomic model by consid-
ering another semi-parametric estimator of the degree of long-range dependence
proposed by Robinson [47], which is the discrete version of the Whittle approx-
imate maximum likelihood estimator in the spectral domain. This estimator,
suggested by Kunsch [35], is based on the mild assumption (2) of the spectrum
f(λ) of a long-memory process in the neighborhood of the zero frequency. The
consequences of a misspecification of the functional form of the spectrum in the
Whittle estimator are avoided with this local approximation. After concentrating
in G, the estimator is given by:

d̂ = argmin
d


ln


 1
m

m∑
j=1

I(λj)
λ−2d

j


− 2d

m

m∑
j=1

ln(λj)


 , (14)
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where I(λj) is the periodogram estimated for the range of Fourier frequencies
λj = πj/T, j = 1, . . . ,m � [T/2], the bandwidth parameter m tends to infinity
with T , but more slowly since 1/m +m/T → 0 as T → ∞. Under appropriate
conditions, which include the existence of a moving average representation and
the differentiability of the spectrum near the zero frequency, this estimator has
the following distribution independent of the value of d:

√
m(d̂− d) ∼ N (0, 1/4) . (15)

Furthermore, this estimator is robust to the presence of conditional heteroskedas-
ticity of general form, and an optimal bandwidth with the same robustness prop-
erties does exist under mild assumptions, see [24].

2.2 Long-Memory Volatility Models

The clustering of the variations of asset returns can be modeled by the class
of Generalized Autoregressive Conditional Heteroskedastic GARCH(1,1), pro-
cesses, see [7] and [48], defined as:

Rt = µ+ εt, σ2
t = ω + βσ2

t−1 + αε
2
t−1, εt ∼ N(0, σ2

t ), (16)

with ω > 0, and α, β ≥ 0. It has been empirically found that for large samples
the sum of the estimated parameters α̂+ β̂ was close to one, the restricted model
being an Integrated GARCH(1,1), henceforth IGARCH(1,1) see [11], defined as:

Rt = µ+ εt, σ2
t = ω + βσ2

t−1 + (1 − β)ε2t−1, εt ∼ N(0, σ2
t ), (17)

which can be written as an ARCH process

Rt = µ+ εt, σ2
t = ω + ψ(L)ε2t , εt ∼ N(0, σ2

t ), (18)

the coefficients of the lag polynomial ψ(L) sum to one but decrease exponentially
to zero. For the class of IGARCH processes, the shocks of the innovations εt on
the level of the conditional variance σ2

τ have a strong persistence ∀τ > t, which
is not consistent with what is empirically observed. Thus, the occurrence of
IGARCH(1,1) processes can be considered as a large sample artefact of a more
complex phenomenon.

The IGARCH process is generalized with the class of long-memory ARCH,
henceforth LM-ARCH, processes introduced by Robinson [45], and defined as:

Rt = µ+ εt, σδ
t = ω + ψ(L)εδt , εt ∼ N(0, σ2

t ), (19)

where ψ(L) =
∑∞

i=1 ψiL
i is an infinite order lag polynomial the coefficients

of which are positive and have asymptotically the following hyperbolic rate of
decay ψj = O

(
j−(1+d)

)
, and δ > 0 is a parameter. Unlike IGARCH(1,1) pro-

cesses, the persistence of the variations of the innovations on the volatility de-
cays slowly. However, there is no stationary solutions to the equations defining a
long-memory ARCH process, see e.g., [19], [28], [14], the only exception being the
long-memory linear ARCH process introduced by Giraitis, Robinson and Sur-
gailis [18]. Granger and Ding [22] and other authors considered the occurrence
of long-range dependence in asset price volatilities.
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2.3 Multivariate Analysis

The multivariate properties of volatility processes can be analyzed by considering
the ‘co-volatility’ processes. The volatility processes associated with a conditional
mean process Rt can be represented by its absolute value |Rt| or the squared
returns process R2

t . Thus, the co-volatility of the bivariate processes (R1,t, R2,t)
can be represented by the processes

√|R1,tR2,t| or R1,tR2,t, although only the
first process is positive. Empirical evidence on asset price series, e.g., FX rates
reported on Table 1, has shown that several time series share a common degree
of long-range dependence in their volatilities and co-volatilities.

Table 1. Estimation of the fractional degree of integration for the series of absolute
returns on Pound-Dollar |R1,t|, Deutschmark-Dollar |R2,t|, squared returns R2

1,t, R2
2,t,

and the co-volatilities
√|R1,tR2,t| and R1,tR2,t for the period April 1979 - January

1997. We use here the Gaussian estimator defined in (14). Asymptotic S.E. (2
√

m)−1

are between parentheses.

m |R1,t| |R2,t|
√|R1,tR2,t|

T/4 0.2385 (0.0147) 0.2312 (0.0147) 0.2413 (0.0147)
T/8 0.3071 (0.0207) 0.3219 (0.0207) 0.3230 (0.0207)
T/16 0.4113 (0.0293) 0.4073 (0.0293) 0.4393 (0.0293)
m R2

1,t R2
2,t R1,tR2,t

T/4 0.1569 (0.0147) 0.1478 (0.0147) 0.1397 (0.0147)
T/8 0.2312 (0.0207) 0.2119 (0.0207) 0.2073 (0.0207)
T/16 0.2770 (0.0293) 0.2787 (0.0293) 0.2952 (0.0293)

A multivariate analysis of long-range dependent volatility processes can be
carried by considering the parametric framework of the class of multivariate
long-memory ARCH processes, introduced by Teyssière [50,51], and defined as:

Rt = m(Rt) + εt, εt ∼ i.i.d.N(0, Σt), (20)

where m(Rt) denotes the vector regression function, εt is a n-dimensional vector
of Gaussian error terms with conditional covariance matrix Σt. The typical
element sij,t of Σt being either

sij,t =
ωij

1 − βij(1)
+
(
1 − (1 − φijL)(1 − L)dij

1 − βijL

)
εi,tεj,t i, j = 1, . . . , n, (21)

or

sij,t =
∞∑

k=1

B(pij + k − 1, dij + 1)
B(pij , dij)

εi,t−kεj,t−k, i, j = 1, . . . , n, (22)

i.e., both conditional variances and covariances are modeled as LM-ARCH pro-
cesses, which differ by different parameterizations: (21) is termed as fractionally
integrated GARCH, see [1], while (22) defines the long-memory ARCH devised
by Ding and Granger [10]. This class of multivariate LM-ARCH models has a few
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restrictions: the conditions on the parameters insuring that the matrix Σt is pos-
itive definite have to be implemented numerically in the estimation procedure.
Furthermore, the number of parameters increases quickly with the dimension
of the vector process, so that so far only three-dimensional models have been
estimated, see [51]. However, empirical estimation results have shown that the
conditional variances and covariances of several asset prices returns share the
same degree of long-memory, an interesting property which stimulated further
research producing the theoretical models presented later in this chapter.

2.4 Change-Point Processes

Volatility processes differ from standard long-range dependent processes: while
long-range dependent time series exhibit local trends, the proxy of volatility
processes, e.g., the absolute returns |Rt| or the squared returns R2

t do not contain
such a trend. Figure 1 below displays the absolute value of returns on the FTSE
100 index, which is not trended, although the estimated degree of long-memory
with Robinson’s [47] Gaussian estimator yields d = 0.33.

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
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4

6
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10

12

Fig. 1. Absolute returns on the FTSE 100 index.

Mikosch and Stărică [42,43] have shown that the ACF of the absolute value
of a non-homogenous GARCH(1,1) process, i.e., a GARCH(1,1) process with
changing coefficients, has a hyperbolic rate of decay which resembles the one of
a long-range dependent process. We consider as example the following change-
point GARCH(1,1) process defined as:

yt = µ+ εt, σ2
t = ω + βσ2

t−1 + αε
2
t−1, εt ∼ N(0, σ2

t ), (23)

where the parameters ω, β and α change as follows:

DGP 1: a GARCH(1,1) process with change point in the middle of the sample,
such that the unconditional variance σ2 = ω/(1 − α− β) remains unchanged
(σ2 = 0.25)

ω = 0.1, β = 0.3, α = 0.3 for t = 1, . . . , [T/2] (24)
ω = 0.15, β = 0.25, α = 0.15 for t = [T/2] + 1, . . . , T
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DGP 2: a GARCH(1,1) process with change in the middle of the sample, with
change in the unconditional variance of the process,

ω = 0.1, β = 0.3, α = 0.3 for t = 1, . . . , [T/2] (σ2 = 0.25) (25)
ω = 0.15, β = 0.65, α = 0.25 for t = [T/2] + 1, . . . , T (σ2 = 1.5) (26)

DGP 3: a smooth transition GARCH(1,1) process, such that the parameters
ω(t), β(t) and α(t) change smoothly, i.e.,

ω(t) = 0.1 + 0.05F (t, [T/2]), β(t) = 0.3 + 0.35F (t, [T/2]), (27)
α(t) = 0.3 − 0.05F (t, [T/2]), γ = 0.05,

where F (t, k) = (1 + exp(−γ(t − k)))−1, γ is a strictly positive parameter
which governs the smoothness of the change. If γ becomes very large, this
DGP reduces to DGP 2.

Table 2. Tests for long-range dependence on the absolute value of GARCH process
with change-point in the middle of the sample. T = 500. Test size 5%.

DGP 1 DGP 2 DGP 3
q KPSS V/S R/S KPSS V/S R/S KPSS V/S R/S

0 0.2015 0.2770 0.2995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.1470 0.1912 0.1785 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.1203 0.1443 0.1218 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.0874 0.0918 0.0601 1.0000 0.9998 0.9996 1.0000 0.9994 0.9991
10 0.0735 0.0674 0.0356 0.9993 0.9981 0.9891 0.9994 0.9979 0.9858
20 0.0632 0.0470 0.0188 0.9945 0.9819 0.8596 0.9978 0.9817 0.8285
30 0.0567 0.0325 0.0076 0.9846 0.9274 0.4844 0.9930 0.9361 0.4112

Table 2 displays the simulation results of the various tests for long-range depen-
dence in the absolute returns generated by the change-point GARCH processes
defined above. Similar results are obtained when considering the series of squares
of a non-homogeneous GARCH(1,1) processes. Thus, the tests proposed in [37],
[36] and [16] can wrongly detect the presence of long-range dependence in the
volatility process, while the true DGP is a non-homogeneous GARCH process
with a non-constant unconditional variance. However, when the unconditional
variance is constant, the power of these tests tends to their size, a statistical prop-
erty which is also observed for change-point tests, see Kokoszka and Teyssière
[32]. We observe that the R/S statistic is more sentitive to the truncation order
q than the other statistics. Furthermore, Fig. 2 below shows absolute returns of
a series generated by DGP 2. Although standard tests and estimators detect the
presence of long-range dependence this series is not trended. The class of non-
homogeneous GARCH(1,1) processes is also appropriate for fitting asset prices
returns.

There is a substantial literature on change-point processes, interested readers
are referred to [5] and [8] for complete surveys. Most of these tests are concerned
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Fig. 2. Absolute value of the realization of a change-point GARCH process.

with change-point in the conditional mean processes, while we are interested here
in conditional variance processes, although one can use, without theoretical foun-
dations, these change-point tests for conditional mean processes to the volatilities
and co-volatility proxy processes, i.e., R2

1,t, |R1,t|, R1,tR2,t, and
√|R1,tR2,t|. We

consider in this survey the tests for change point in conditional variance, pro-
posed by Kokoszka and Leipus [34], Horváth, Kokoszka and Teyssière [25] and
Kokoszka and Teyssière [32].

Kokoszka and Leipus [34] proposed a CUSUM based estimator for change-
point in the class of ARCH(∞) processes at unknown time t. This estimator is
defined by:

t̂ = min
{
t : |Ct| = max

1≤j≤T
|Cj |

}
, (28)

where

Ct =
t(T − t)
T 2


t−1

t∑
j=1

R2
j − 1

T − t
T∑

j=t+1

R2
j


 . (29)

Horvath et al. [25] proposed several tests for change-point in ARCH se-
quences, based on the empirical process of squared residuals. Berkes and Horváth
[4] analyzed the empirical process of squared residuals for GARCH(p, q) se-
quences. According to Kokoszka and Teyssière [32], some of these asymptotic
tests work well when considering the squared residuals for GARCH(1,1) se-
quences although bootstrap tests have always the correct size and are then more
reliable.

We consider here a GARCH(1,1) model fitted on the simulated returns, i.e.,

Rt = µ+ εt, εt ∼ N(0, σ2
t ), σ2

t = ω + βσ2
t−1 + αε

2
t−1, (30)

and we denote by ε̂2t the sequence of squared standardized residuals for this
GARCH(1,1) model.

The first statistic is a Kolmogorov-Smirnov type statistic. For 1 ≤ k ≤ T ,
define

T̂ (k, t) =
√
T
k

T

(
1 − k

T

) ∣∣∣F̂k(t) − F̂ ∗
k (t)

∣∣∣ , (31)
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with

F̂k(t) =
1
k
#{i ≤ k : ε̂2i ≤ t}, F̂ ∗

k (t) =
1

T − k#{i > k : ε̂2i ≤ t}. (32)

The K-S statistic is defined as

M̂ = sup
0≤t≤∞

max
1≤k≤T

|T̂ (k, t)|. (33)

According to [32], correct inference is obtained by using bootstrap based infer-
ence. Horvath et al. [25] proposed also a Cramér-von Mises statistic:

B̂ =
∫ 1

0

{
1
T

T∑
i=1

[T̂ ([Ts], ε̂2i )]
2

}
ds. (34)

The distribution function of B can be derived from Blum, Kiefer and Rosenblatt
[6]. Kokoszka and Teyssière [32] have shown that this asymptotic test provides
correct inference.

3 Interaction Models

The class of models considered here differ from standard microeconomic models
as we consider that agents are heterogeneous and do not act independently
on the markets, but their beliefs and actions are affected by the predominant
opinion among market participants. Keynes pointed out that individuals trades
are concerned about what ‘market sentiment’ is rather than about fundamental
values. We consider here equilibrium models, thus we rule out the case of the
intra-day prices, which are not equilibrium prices but result from the content of
book orders.

If the markets are efficient, the expected price E(Pt+1) of an asset at time
t+ 1 conditional on the information set It is given by:

E(Pt+1|It) = Pt. (35)

In our model, agents do not consider markets to be efficient and assume that
they can predict the next price Pt+1. Chartists assume that the exchange rate
Pt+1 is a convex linear function of the previous prices, i.e.,

Ec (Pt+1|It) =
Mc∑
j=0

hjPt−j , with
Mc∑
j=0

hj = 1, (36)

where hj , j = 0, . . . ,M c are constants, M c is the memory of the chartists, while
fundamentalists forecast the next price as:

Ef (Pt+1|It) = P̄t +
Mf∑
j=1

νj(Pt−j+1 − P̄t−j), (37)
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where νj , j = 1, . . . ,Mf are positive constants, representing the degree of rever-
sion to the fundamentals, Mf is the memory of the fundamentalists. This series
of ‘fundamentals’ P̄t, which can be thought as the price if it were only to be
explained by a set of relevant variables, is assumed to follow a random walk:

P̄t = P̄t−1 + εt, with εt ∼ N(0, σ2
ε). (38)

Individuals i, i = 1, . . . , N have a standard mean-variance utility function:

U(W i
t+1) = E(W

i
t+1) − λV (W i

t+1), (39)

where λ denotes the risk aversion coefficient, E(.) and V (.) denote the expecta-
tion and variance operators. Agents have the possibility of investing at home in
a risk free asset or investing abroad in a risky asset.

Denote by ρt the foreign interest rate, by di
t the demand by the ith individual

for foreign currency, and by r the domestic interest rate. The exchange rate Pt

and the foreign interest rate ρt are considered by agents as independent random
variables, with

ρt ∼ N(ρ, σ2
ρ) with ρt > r. (40)

Hence, the cumulated wealth of individual i at time t+ 1, W i
t+1 is given by:

W i
t+1 = (1 + ρt+1)Pt+1d

i
t + (W i

t − Ptd
i
t)(1 + r). (41)

Thus, we have:

E(W i
t+1|It) = (1 + ρ)Ei(Pt+1|It)di

t + (W i
t − Ptd

i
t)(1 + r), (42)

V (W i
t+1|It) = (di

t)
2ζt where ζt = V (Pt+1(1 + ρt+1)) . (43)

Demand di
t is found by maximizing utility. First order condition gives

(1 + ρ)Ei(Pt+1|It) − (1 + r)Pt − 2ζtλdi
t = 0, (44)

where Ei(.|It) denotes the expectation of an agent of type i. Let kt be the
proportion of fundamentalists at time t, the market demand is:

dt =
(1 + ρ)

(
ktE

f (Pt+1|It) + (1 − kt)Ec(Pt+1|It)
)− (1 + r)Pt

2ζtλ
. (45)

Now consider the exogenous supply of foreign exchange Xt, then the market
is in equilibrium if aggregate supply is equal to aggregate demand, i.e., Xt = dt,
which gives

Pt =
1 + ρ
1 + r

(
ktE

f (Pt+1|It) + (1 − kt)Ec(Pt+1|It)
)− 2ζtλXt

1 + r
. (46)

We assume that 2ζtλXt/(1 + ρ) = γP̄t. If Mf = M c = 1, then the equilibrium
price is given by

Pt =
kt − γ
A

P̄t − ktν1
A
P̄t−1 +

(1 − kt)h1

A
Pt−1, (47)
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with
A =

1 + r
1 + ρ

− (1 − kt)h0 − ktν1. (48)

Thus, when kt jumps from zero to one, our so called ‘Havana-India’ model re-
sembles a change-point process in the conditional mean. Since the process kt is
likely to take all values between 0 and 1, it is of interest to study the effects of
the evolution of the process kt on the occurrence of long-range dependence in
the volatility of the series generated by the microeconomic model.

We consider a multivariate extension of this model, i.e., the joint modeling of
a bivariate process (P1,t, P2,t). Both exchange rates depend on a pair of foreign
interest rates (ρ1,t, ρ2,t). Our bivariate model then becomes:

(
P1,t

P2,t

)
=

(
kt−γ
A1
P̄1,t − ktν1,1

A1
P̄1,t−1 +

(1−kt)h1,1
A1

P1,t−1
kt−γ
A2
P̄2,t − ktν2,1

A2
P̄2,t−1 +

(1−kt)h2,1
A2

P2,t−1

)
, (49)

with
Ai =

1 + r
1 + ρi

− (1 − kt)hi,0 − ktνi,1. (50)

We assume that the bivariate process of fundamentals (P̄1,t, P̄2,t) displays some
form of positive correlation, i.e.,(

P̄1,t

P̄2,t

)
=
(
P̄1,t−1
P̄2,t−1

)
+
(
ε1,t

ε2,t

)
,(

ε1,t

ε2,t

)
∼ N

[(
0
0

)
,

(
σ2

1,1 σ1,2

σ1,2 σ
2
2,2

)]
, σ1,2 > 0. (51)

In the simulation study, we set σ1,2 so that the coefficient of correlation between
the two processes ε1,t and ε2,t is equal to 0.75. This choice has been motivated
by the estimation results in [50] for the bivariate long-memory ARCH processes,
where the coefficient of correlation in the conditional covariance matrix Σt has
been found equal to 0.75. As we will see in Sect. 4, the assumption of a positive
correlation is crucial if we are interested in the co-volatility processes

√|R1,tR2,t|
and R1,tR2,t: in that case these co-volatility processes have exactly the same
degree of long-memory as the processes |R1,t|, |R2,t| and R2

1,t, R
2
2,t respectively,

in accordance with the empirical findings of [50]. In [29], we assume σ1,2 = 0,
and simulation results are less satisfactory than the current ones, as the degree
of LRD for the series

√|R1,tR2,t| is slightly higher than the ones for the series
|R1,t|, |R2,t|.

We also assume that the process kt is the same for both markets, i.e., the
proportion of fundamentalists is the same for both currencies. This assumption
is consistent with the one that fundamentals for both series are correlated, i.e.,
both FX markets are linked. This is a reasonable assumption if we consider that
both currencies belong to the same ‘target-zone’, see [12].

We consider here several types of processes for {kt}T
t=1. The first one is the

epidemiologic process introduced by Hans Föllmer and used in [31,29,30], where
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agents interact and communicate their beliefs on the next period forecast through
Föllmer’s epidemiologic process.

Let N be the total number of agents and ϑt be the number of agents with
a fundamentalist forecast at time t. We assume that pairs of agents meet at
random and that the probability that the first agent is converted to the opinion
of the second one is equal to (1− δ). Furthermore, each agent can independently
change his opinion with probability ξ, so that the process is not trapped in the
extremes, i.e., agents are either all chartists or all fundamentalists.

Given that the state of the process is summarized by the value of ϑt, its
evolution is defined by the following transition matrix:

Pr(ϑ, ϑ+ 1) =
(
1 − ϑ

N

)(
ξ + (1 − δ) ϑ

N − 1

)
, (52)

Pr(ϑ, ϑ− 1) =
ϑ

N

(
ξ + (1 − δ)N − ϑ

N − 1

)
, (53)

Pr(ϑ, ϑ) = 1 − Pr(ϑ, ϑ+ 1) − Pr(ϑ, ϑ− 1). (54)

For this epidemiologic process, the proportion of fundamentalists and the
forecasts of agents does not depend on the past performance of forecasts func-
tions. For that reason, we can consider a diffusion process for kt which depends
on the accuracy of the forecast functions in the recent periods: the probability
of choosing a particular forecast function depends on its comparative perfor-
mance over the competing forecast function. We can use Theil’s [52] U statistic
as measure of forecast accuracy over the last M periods:

U j
M =

√√√√M−1
∑M

l=1 wl (Pt−l − Ej(Pt−l|It−1−l))
2

M−1
∑M

l=1 wlP 2
t−l

, j ∈ {c, f},
∑

l

wl = 1,

(55)
M being the learning memory of agents, the weights wl, l = 1, . . . ,M represent-
ing the relative importance of the forecast errors at time t − l. We choose here
an exponential choice function gj(·) for the forecast function Ej(·) defined by:

gj(t) = exp(−ΥU j
M ), Υ > 0, j ∈ {c, f}, (56)

the parameter Υ is called the “intensity of choice”. At time t, agents will chose
with probability πf (t) the fundamentalist forecast function, where

πf (t) =
gf (t)

gf (t) + gc(t)
, (57)

the probability of choosing the chartist forecast function is πc(t) = 1 − πf (t).
For the bivariate process, the probability of choosing the fundamentalist forecast
function is given by averaging the two choice functions for both markets.

Let ϑt/N be the proportion of fundamentalists resulting from either the
epidemiologic process or the learning process. We assume that agents observe
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this proportion with error, i.e., agent i observe ki,t defined as:

ki,t =
ϑt

N
+ εi,t with εi,t ∼ N(0, σ2

ϑ). (58)

If agent i observe ki,t ≥ 0.5, then he will make a fundamentalist forecast, oth-
erwise he will make a chartist forecast. The proportion kt of agents making a
fundamentalist forecast is then given by:

kt = N−1#
{
i : ki,t ≥ 1

2

}
. (59)

For the epidemiologic case, the herding behavior of the process kt into the
extremes depends on ξ and σϑ, while it depends on Υ and σϑ for the process
based on the forecasts accuracy. For both processes, the parameter σϑ measures
the accuracy of observation of the proportion of fundamentalists; see (58). If σϑ

becomes smaller, the prevailing opinion is observed with more accuracy, which
results in massive swings of opinion.

As we will see in the next section, these parameters govern the level of long-
range dependence in the volatility of the simulated returns.

4 Simulation Study

We simulated 10.000 replications of our microeconomic models. We considered
samples of 1500 observations. The models generates the empirical properties of
asset prices returns. The series of asset returns Rt do not display dependence, the
average estimated value for d is d̂ = 0.002 for the series Rt. When the sample size
increases from 750 to 1500, the estimated value for d increases from d̂ = 0.20
to d̂ = 0.28. When estimating the parameters of a GARCH processes on the
series of 750 observations, we get α̂ = 0.04 and β̂ = 0.74, while for the series of
1500 observations, α̂ = 0.055 and β̂ = 0.88: the model replicates the empirical
property of occurrence of IGARCH processes when the sample size increases, see
[30]. The occurrence of long-range dependence in asset prices volatility might be
the consequence of several changes in regime in the price process.

The level of long-range dependence d of the simulated processes increases
when we reduce the value of σϑ, i.e., when the proportion of fundamentalists is
observed with more accuracy: in that case the process kt herds into the extremes.
The level of long-range dependence is linked to the swings in the predominant
opinion which make the price process defined by (47) switching between two
regimes.

The assumption of a positive correlation between the fundamentals proved
to be important. In [29], we assume that there is no correlation between the
two processes (ε1,t, ε2,t), i.e., σ1,2 = 0. As a consequence, the estimated level
of long-range dependence in the co-volatility process

√|R1,tR2,t| was slightly
higher than the one of the volatility processes |R1,t| and |R2,t|. Furthermore,
for this uncorrelated setting, the co-volatility process R1,tR2,t does not display
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Table 3. Tests for long-range dependence on the absolute value of Simulated returns,
Rt, absolute returns |Rt| and squared returns R2

t . T = 1500. Test size 5%.

Rt, P (d = 0) |Rt|, P (d > 0) R2
t , P (d > 0)

q KPSS V/S R/S KPSS V/S R/S KPSS V/S R/S

0 0.9369 0.9358 0.9343 0.9460 0.9772 0.9720 0.9440 0.9733 0.9739
1 0.9389 0.9376 0.9369 0.9408 0.9739 0.9687 0.9349 0.9674 0.9655
2 0.9395 0.9408 0.9388 0.9375 0.9687 0.9642 0.9323 0.9648 0.9609
3 0.9402 0.9486 0.9414 0.9343 0.9635 0.9622 0.9271 0.9609 0.9557
4 0.9395 0.9512 0.9421 0.9297 0.9616 0.9609 0.9226 0.9577 0.9531
5 0.9388 0.9577 0.9453 0.9271 0.9590 0.9590 0.9219 0.9551 0.9512
10 0.9375 0.9629 0.9512 0.9161 0.9486 0.9473 0.9076 0.9408 0.9421
15 0.9395 0.9603 0.9531 0.8946 0.9375 0.9388 0.8875 0.9284 0.9336
20 0.9369 0.9649 0.9557 0.8777 0.9265 0.9271 0.8719 0.9167 0.9232
25 0.9395 0.9649 0.9557 0.8595 0.9031 0.9161 0.8491 0.8907 0.9083
30 0.9375 0.9681 0.9551 0.8270 0.8823 0.9024 0.8296 0.8615 0.8927

Table 4. Gaussian estimates of d for the bivariate series of simulated absolute returns
|R1,t|, |R2,t|,

√|R1,tR2,t|. (Monte Carlo S.E. in parenthesis.) T = 1500. mopt denotes
the optimal bandwidth.

m |R1,t| |R2,t|
√|R1,tR2,t|

mopt 0.2771 (0.1127) 0.2766 (0.1124) 0.2793 (0.1130)
84 0.2984 (0.0965) 0.2978 (0.0975) 0.3008 (0.0978)
108 0.2660 (0.0880) 0.2653 (0.0873) 0.2670 (0.0883)
132 0.2421 (0.0811) 0.2411 (0.0814) 0.2432 (0.0821)
156 0.2244 (0.0753) 0.2232 (0.0757) 0.2250 (0.0755)

Table 5. Gaussian estimates of d for the bivariate series of simulated squared returns
R2

1,t, R2
2,t, R1,tR2,t. (Monte Carlo S.E. in parenthesis.) T = 1500. mopt denotes the

optimal bandwidth.

m R2
1,t R2

2,t R1,tR2,t

mopt 0.2582 (0.1076) 0.2592 (0.1096) 0.2121 (0.1009)
84 0.2851 (0.0939) 0.2852 (0.0956) 0.2462 (0.0928)
108 0.2534 (0.0855) 0.2541 (0.0857) 0.2176 (0.0835)
132 0.2304 (0.0788) 0.2308 (0.0793) 0.1978 (0.0775)
156 0.2137 (0.0723) 0.2130 (0.0736) 0.1822 (0.0706)

any long-range dependence. With the assumption that σ1,2 > 0, the simulated
co-volatility process R1,tR2,t displays long-memory, the degree of which is close
to the one of the series R2

1,t and R
2
2,t, as empirically observed, see Tables 4 and 5.

From Table 6, we can see that the V/S and R/S ‘pox-plot’ estimation results
do not differ too much from the ones provided by the Gaussian estimator [47].

We report here simulation results for the CVM and K-S change-point tests.
Interested readers are referred to [31,30] for the performance of the test by
Kokoszka and Leipus [34]. Given that the asymptotic K-S test does not have
the correct size, we resort to bootstrap based inference for this test, the number
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Table 6. “Pox-plot” estimates of d based on the squared returns series R2
t . (Monte

Carlo S.E. in parenthesis.) T = 1500.

R/S estimate of d V/S estimate of d KPSS estimate of d

d 0.2506 (0.0791) 0.2604 (0.0993) 0.3324 (0.1182)

of bootstraps B is set to 399 for all replications. For a test of size 5%, the CVM
test rejects 22.97% of the times the null hypothesis of no change-point, while
the K-S test rejects this null hypothesis 20.58% of the times. When interpreting
these results, we have to keep in mind that these tests have been devised for
processes with a single change-point in the conditional variance, and that we
apply them to the first-difference of non-standard conditional mean processes,
which can have multiple changes in regime.

Figure 3 displays the absolute value of a series of simulated returns gener-
ated by the model. This series resembles the series of absolute returns on asset
prices, i.e., it does not have a trend, although the ACF of this series displayed
LRD-type behavior, see Fig. 4. In Kokoszka and Teyssière [32] and Kirman and
Teyssière [31], we used the wavelet estimator by Veitch and Abry [53] for esti-
mating the degree of LRD of several asset prices volatilities and the volatility
process generated by our model. Wavelet analysis is of interest as this multi-
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Fig. 3. Absolute value of a series of returns produced by the microeconomic model.
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Fig. 4. ACF of the absolute value of a series of returns produced by the model.
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resolution analysis is unaffected by changes in the location parameter of a time
series and is then able to distinguish between genuine long-range dependence
and spurious long-range dependence caused by changes in regimes.

For both real data and series simulated by our model, we observed that
the estimated degree of LRD with the wavelet estimator is far lower than the
one obtained with the Whittle estimator. The degree of LRD for the absolute
returns |R1,t| on British Pound-US dollar drops from 0.41 when estimated with
the local Whittle estimator to 0.12 when estimated with the wavelet estimator,
while the degree of LRD for the absolute returns |R2,t| on German Deutschmark-
US dollar falls from 0.40 to 0.12 respectively. We observe the same changes for
the degrees of LRD for the other empirical and simulated volatility and co-
volatility processes, i.e., R2

1,t, R
2
2,t,

√|R1,tR2,t| and R1,tR2,t. Furthermore, for
several series, the confidence intervals for the wavelet estimates often contain
the value zero. Our microeconomic models are then able to generate most of the
empirical dependence properties of daily asset returns.
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Alan Kirman, Davar Koshnevisan, Remigijus Leipus, Murad Taqqu, and par-
ticipants in the International Conference on “Long-Range Dependent Stochas-
tic Processes and their Applications” in Bangalore, January 2002, and to the
Stochastics Seminar at the Department of Mathematics of the University of
Utah, May 2002, for useful discussions and comments. The final version of this
paper has been mainly written in April–May 2002, during my visit to the De-
partment of Mathematics and Statistics of Utah State University, which I thank
as well as Piotr Kokoszka for their hospitality.
This text presents research results of the Belgian Program on Interuniversity
Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Sci-
ence Policy Programming. The scientific responsibility is assumed by the author.

References

1. R. Baille, T. Bollerslev, H. Mikkelsen: J. Econometrics 74, 3 (1996)
2. J. Beran: Statistics for Long-Memory Processes. (Chapman and Hall, New York

1994)
3. J. Beran, D. Ocker: J. Business. and Eco. Statist. 19, 103 (2001)
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