LinkedIn Twitter
Research & Publications

News

Research Interests

  • Machine learning, computational statistics,
  • Long-memory and multifractal processes, change-point detection,
  • Wavelet signal processing of scaling processes,
  • Artificial intelligence and complexity in financial markets.

Publications

  1. D. Surgailis, G. Teyssière and M. Vaičiulis. The increment ratio statistic.
    Journal of Multivariate Analysis (2008) vol 99, 510-541. MR2396977. Pdf file (Supplementary Material Pdf).
  2. M. Lavielle and G. Teyssière. Adaptive detection of multiple change-points in asset price volatility.
    In Long-Memory in Economics. G. Teyssière et al. editors, 129-156, Springer (2007). MR2265058. Pdf file.
  3. G. Teyssière and P. Abry. Wavelet analysis of nonlinear long-range dependent processes. Applications to financial time series.
    In Long-Memory in Economics. G. Teyssière et al. editors, 173-238, Springer (2007). MR2265060. Pdf file.
  4. D. Kateb, A. Seghier and G. Teyssière. Prediction, orthogonal polynomials and Toeplitz matrices: a fast and reliable approximation to the Durbin-Levinson algorithm,
    In Long-Memory in Economics. G. Teyssière et al. editors, 239-261, Springer (2007). MR2265061.
  5. M. Lavielle and G. Teyssière. Detection of multiple change-points in multivariate time series.
    Lithuanian Mathematical Journal (2006) vol 46, 287-306. MR2285348. Pdf file. M. Lavielle and G. Teyssière. Détection de ruptures multiples dans des séries temporelles multivariées (French version of this paper).
    Lietuvos Matematikos Rinkinys (2006) vol 46, 351-376. Pdf file.
  6. P. Doukhan, G. Teyssière and P. Winant. A LARCH\((\infty)\) vector valued process.
    In Dependence in Probability and Statistics. Lecture Notes in Statistics,, vol 187, 245-258, Springer (2006). MR2283258.
  7. A. Kirman and G. Teyssière. Testing for bubbles and change-points.
    Journal of Economic Dynamics and Control (2005) vol 29, 765-799. MR2129522. Pdf file.
  8. L. Horváth, P. Kokoszka and G. Teyssière. Bootstrap misspecification tests for ARCH based on the empirical process of squared residuals.
    Journal of Statistical Computation and Simulation (2004) vol 74, 469-485. MR2073226. Pdf file.
  9. P. Kokoszka, G. Teyssière and A. Zhang. Confidence intervals for the autocorrelations of the squares of GARCH sequences.
    In Computational Science - ICCS 2004. Lecture Notes in Computer Science. M. Bubak et al. editors, vol 3039, 827-834, Springer (2004). MR2233424. Pdf file. Volume for the Workshop on Computational Methods in Finance and Insurance, Kraków, Poland, June 2004. Slides.
  10. L. Giraitis, P. Kokoszka, R. Leipus and G. Teyssière. On the power of \(R/S\)-type tests under contiguous and semi long-memory alternatives.
    Acta Applicandae Mathematicae (2003) vol 78, 285-299. MR2024032. Pdf file. (Special Issue for the 8th Vilnius Conference on Probability Theory and Mathematical Statistics), Vilnius, Lithuania.
  11. G. Teyssière. Interaction models for common long-range dependence in asset price volatilities.
    Invited chapter in Processes with Long Range Correlations: Theory and Applications. Lecture Notes in Physics. G. Rangarajan and M. Ding editors, vol 621, 251-269, Springer (2003). DOI. Pdf file. Invited lecture to the International Conference on Long-Range Dependent Stochastic Processes and their Applications, Bangalore, India, January 2002.
  12. L. Giraitis, P. Kokoszka, R. Leipus and G. Teyssière. Rescaled variance and related tests for long memory in volatility and levels.
    Journal of Econometrics (2003) vol 112, 265-294. MR1951145. Pdf file. See also L. Giraitis, P. Kokoszka, R. Leipus and G. Teyssière, Corrigendum to "Rescaled variance and related tests for long memory in volatility and levels",
    Journal of Econometrics (2005) vol 126, 571-572. MR2155635. Pdf file.
  13. A. Kirman and G. Teyssière. Bubbles and Long Range Dependence in Asset Prices Volatilities.
    In Equilibrium, Markets and Dynamics. C.H. Hommes, R. Ramer and C. Withagen editors, 307-327, Springer (2002).
    DOI.
  14. G. Teyssière and A. Kirman. Microeconomic models for long-memory in the volatility of financial time series.
    SNDE (2002) vol 5, 281-302. DOI.
  15. L. Horváth, P. Kokoszka and G. Teyssière. Empirical process of the squared residuals of an ARCH sequence.
    The Annals of Statistics (2001) vol 29, 445-469. MR1863965. Pdf file.
  16. L. Giraitis, P. Kokoszka, R. Leipus and G. Teyssière. Semiparametric estimation of the intensity of long-memory in conditional heteroskedasticity.
    Statistical Inference for Stochastic Processes (2000) vol 3, 113-128. (Special Issue on Limit Theorems and Long-Range Dependence). MR1819290. Pdf file.
  17. G. Teyssière. Multivariate long-memory ARCH modelling for high frequency foreign exchange rates.
    In Proceedings of the Second High Frequency Data in Finance (HFDF-II) Conference, Olsen & Associates, Zurich, (1998). Pdf file.

Books

Long-Memory in Economics
G. Teyssière and A. Kirman editors, Springer (2007).
MR2263582
ISBN (Hardcover): 978-3540226949
ISBN (Paperback): 978-3642061547
ISBN (eBook): 978-3540346258


Dependence in Probability and Statistics, Lecture Notes in Statistics, Vol 200.
G. Lang, D. Surgailis and G. Teyssière editors, Springer (2010).
MR2741808
ISBN (Paperback): 978-3642141034
ISBN (eBook): 978-3642141041


Preprints & Conference Slides

  • G. Teyssière and P. Abry. Wavelet multifractal analysis of high-frequency financial data (2010), 10th Vilnius Conference on Probability Theory and Mathematical Statistics
  • G. Teyssière. Détection de ruptures multiples sur des séries chronologiques univariées et multivariées. Application à des données de prix de l'énergie (2008). (Rapport de recherche pour EDF).
  • G. Teyssière. Long-range dependence and multiple change-points in multivariate time series (2007). Slides
    Invited presentation to the International Conference on Statistical Models for Financial Data II, organized by István Berkes and Lajos Horváth at the Institute of Statistics, Graz University of Technology, Graz, Austria, 23-26 May 2007.
  • G. Teyssière. Bubbles, non-stationarity and double long memory (2004).
    Invited presentation to the International Conference on Statistical Models for Financial Data, organized by István Berkes and Lajos Horváth at the Institute of Statistics, Graz University of Technology, Graz, Austria, May 2004.
  • P. Kokoszka and G. Teyssière. Change-point detection in GARCH models: asymptotic and bootstrap tests, PostScript file. Presented to the Invited Paper Meeting of the 54th Session of the International Statistical Institute, August 2003. Slides. Under revision.
  • G. Teyssière. Nonlinear and semiparametric long-memory ARCH (2001).
    Part of the material of this paper appeared in L. Giraitis, P. Kokoszka, R. Leipus and G. Teyssière On the power of R/S-Type tests under contiguous and semi long-memory alternatives, Acta Applicandae Mathematicae (2003), (Special Issue for the 8th Vilnius Conference on Probability Theory and Mathematical Statistics) vol 78, 285-299. DOI. The remainder of this paper has been inserted in others papers.
  • G. Teyssière. Modelling exchange rates volatility with multivariate long-memory ARCH processes (1997). Pdf file (Old Version).
  • G. Teyssière. Double long-memory financial time series (1996), Preprint
    Presented in the 1997 Econometric Society European Meeting, the 1997 Society for Economic Dynamics conference Oxford, the 28th Workshop of the Euro Working Group on Financial Modelling, Vilnius, May 2001, Slides.

    In 1996, I pioneered the class of double long memory processes with the ARFIMA-FIGARCH; this was my first paper in time series analysis. My 1998 paper on multivariate (trivariate) ARFIMA-FIGARCH, published in the proceedings of the High Frequency Data in Finance-II conference organized by Olsen & Associates (see above in the list of publications) is available here Pdf.

Co-Authors

Academic Service

Updated April 26, 2023.